APPENDIX C
SMALL PROJECT DRAINAGE REQUIREMENTS

KING COUNTY, WASHINGTON SURFACE WATER DESIGN MANUAL

Section C.1 Small Project Drainage Review Requirements C-5
Section C.1.1 Procedure for Determining Requirements C-6
Section C.1.2 Targeted Drainage Review Requirements C-9
Section C.1.3 Application of Flow Control BMPs C-13
Section C.1.4 Application of ESC Measures C-20
Section C.1.5 Small Project Submittal Requirements C-23

Section C.2 Flow Control BMPs C-25
Section C.2.1 Full Dispersion C-26
Section C.2.2 Full Infiltration C-41
Section C.2.3 Limited Infiltration C-49
Section C.2.4 Basic Dispersion C-51
Section C.2.5 Rain Garden C-59
Section C.2.6 Permeable Pavement C-64
Section C.2.7 Rainwater Harvesting C-68
Section C.2.8 Vegetated Roof C-71
Section C.2.9 Reduced Impervious Surface Credit C-74
Section C.2.10 Native Growth Retention Credit C-78
Section C.2.11 Perforated Pipe Connection C-80

Section C.3 Erosion and Sediment Control (ESC) Measures C-83
Section C.3.1 Stabilized Construction Entrance C-84
Section C.3.2 Mulching C-86
Section C.3.3 Nets and Blankets C-88
Section C.3.4 Plastic Covering C-90
Section C.3.5 Mark Clearing Limits/Minimize Clearing C-91
Section C.3.6 Silt Fence C-92
Section C.3.7 Vegetated Strip C-94
Section C.3.8 Triangular Silt Dike C-94
Section C.3.9 Storm Drain Inlet Protection C-96
Section C.3.10 Seeding C-101
Section C.3.11 Sodding C-103
Section C.3.12 Interceptor Dikes and Swales C-104
Section C.3.13 Ditches C-106
Section C.3.14 Pipe Slope Drain C-108
Section C.3.15 Dewatering Control C-109
Section C.3.16 Control of Other Pollutants C-110

Section C.4 Small Project Drainage Plan Specifications C-111
Section C.4.1 Components of Small Project Drainage Plans C-111
Section C.4.2 Specifications for Site Plans C-113
Section C.4.3 BMP Design and Maintenance Details C-117
Section C.4.4 Written Drainage Assessment C-118

Section C.5 Reference Section C-121
Section C.5.1 Small Project Drainage Review Process C-121
Section C.5.2 Declaration of Covenant C-125
APPENDIX C
SMALL PROJECT DRAINAGE REQUIREMENTS

The drainage requirements in this appendix are for small scale residential and agricultural projects that are subject to Small Project Drainage Review as determined in Section 1.1.2 of the Surface Water Design Manual (SWDM). Small Project Drainage Review is a simplified alternative to the Full Drainage Review process normally conducted by the County as part of its review of permits to evaluate a project's compliance with the core and special requirements of the SWDM. The thrust of these requirements is to provide for mitigation and control of increased runoff and pollution from development sites. For larger developments, this typically involves engineering analysis and design of flow control facilities (e.g., detention ponds) to mitigate increased runoff, water quality treatment facilities (e.g., wetponds) to remove pollutants from the runoff, and erosion and sediment controls (ESC) to minimize the discharge of sediment-laden runoff and other pollutants during construction.

For small scale projects, required mitigation of runoff impacts can usually be achieved with simpler measures that can be applied by a non-engineer. These include flow control BMPs (Best Management Practices) such as splash blocks or gravel trenches to disperse or infiltrate runoff from impervious areas, or reducing the amount of impervious area and preserving native vegetation. Such measures provide both flow and water quality mitigation. Also included are simpler erosion and sediment control (ESC) measures applicable to small projects to prevent the discharge of sediment and other pollutants during construction. Examples of ESC measures include phasing or minimizing clearing, installing silt fences to contain sediment on site, and placing straw or other mulching materials on exposed soils. It also includes implementation of pollution prevention practices applicable to specific construction activities such as proper use, handling, and storage of materials, chemicals, equipment, and fuel.

In most cases, the small project drainage requirements in this appendix can be met with submittals prepared by contractors, architects, or homeowners without the involvement of a professional engineer. For more information on the Small Project Drainage Review Process, see Reference Section C.5.1 (p. C-121).

Why Flow control BMPs are Necessary for Small Projects

On undeveloped land, most rainwater soaks into the ground and flows slowly to nearby lakes and streams through the upper layers of soil. When that same area is cleared or covered with an impervious surface, the rainwater is no longer captured by dense vegetation and forest duff, but flows quickly and in greater quantities across the site and through pipes and channels to streams and lakes. Also, as it flows over developed surfaces (e.g., driveways, roads, lawns, and pastures), various pollutants generated by human uses of the land are picked up and carried downstream. The increased quantities of runoff from the site, when combined with increases from other sites, results in increased flooding and erosion of downstream properties and damage to aquatic areas habitat. And, the pollutants collected by the runoff degrade the water quality and habitat functions of streams, lakes, and wetlands. Larger developments address these impacts by storing the runoff in engineered flow control facilities (e.g., detention or infiltration ponds or
vaults) that slowly release the runoff downstream and by treating the runoff in engineered water quality facilities (e.g., wet ponds, biofiltration swales, or sand filters).

Controlling flows from small projects is just as important as controlling flows from large developments, because the cumulative effect of uncontrolled flows from many small projects can be equivalent to those from a single large project. For most small projects, however, engineered flow control facilities may not be practicable or even warranted if the quantity of runoff from developed surfaces can be minimized, dispersed, or otherwise infiltrated onsite through the use of flow control BMPs. The same holds true for water quality facilities. While the primary focus of flow control BMPs is to mitigate increased runoff quantities, they are also effective in mitigating increased pollution generated by developed surfaces.

Why ESC is Necessary

ESC measures are necessary because land disturbing activity associated with clearing and grading exposes a site's soils to erosion by stormwater. The soil eroded from disturbed areas is referred to as sediment, which is washed downstream and deposited in pipes, ditches, streams and lakes. Sediment deposited in a pipe or ditch reduces its capacity to convey flows and can increase the likelihood of flooding. Sediment deposited in streams clog the gravels that salmon use for spawning. Nutrients contained in the eroded soil that reach lakes can upset the chemical balance of the lake, causing excessive growth of algae, milfoil, and other plants, and decreasing recreational uses such as swimming, boating, and fishing. ESC measures are typically used during construction to prevent soil erosion and/or transport of sediment downstream until the site can be stabilized with vegetation cover/landscaping. Other construction activities such as the use, handling, and storage of materials, chemicals, equipment, and fuel can result in contaminates coming into contact with stormwater and potentially washed downstream. Therefore, pollution prevention measures applicable to specific construction activities need to be implemented to avoid the discharge of pollutants from the construction site.

Utility of Appendix C

For projects in Small Project Drainage Review, this appendix outlines the drainage requirements, flow control BMPs, and ESC measures necessary to mitigate the stormwater impacts of development without the construction of expensive stormwater facilities (i.e., flow control and water quality facilities). For projects in Full Drainage Review or other types of drainage review, the flow control BMPs contained in this appendix are referenced for application to any size or type of project as specified in the *SWDM*. In fact, because flow control facilities cannot mitigate all the impacts from developed surfaces, flow control BMPs are required to some extent on nearly all projects in drainage review regardless of whether stormwater facilities are required (see *SWDM* Section 1.2.3.4, "Flow Control BMPs Requirement").

Organization of Appendix C

The information presented in this appendix is organized into five main sections as follows:

- Section C.1, "Small Project Drainage Review Requirements" (p. C-5)
- Section C.2, "Flow Control BMPs" (p. C-25)
- Section C.3, "Erosion and Sediment Control (ESC) Measures" (p. C-83)
- Section C.4, "Small Project Drainage Plan Specifications" (p. C-111)
- Section C.5, "Reference Section" (p. C-121)
Definitions of Key Terms

Proper application of the small project drainage requirements in this appendix requires an understanding of the following key terms and their definitions. These terms are highlighted in **bold italic** throughout Appendix C. Other important terms are defined in the text when they are first introduced. These are highlighted in italic when they are first introduced but are not highlighted throughout the appendix as are key terms.

Agricultural project means any project located on, and proposing improvements consistent with, the permitted uses of land zoned for Agriculture (A zoned lands) as defined in KCC 21A.08.

Civil engineer means a person licensed by the State of Washington as a professional engineer in civil engineering.

Erosion hazard area is the critical area\(^1\) designation, defined and regulated in KCC 21A, that is applied to areas underlain by soils that are subject to severe erosion when disturbed. See the definition of this term in KCC 21A.06 for more details.

Flood hazard area is the critical area designation, defined and regulated in KCC 21A, that is applied to areas subject to inundation by a 100-year flood event or areas at risk from channel migration. See the definition of this term in KCC 21A.06 for more details. Flood hazard areas generally include, but are not limited to, aquatic areas (e.g., streams or lakes), wetlands, or closed depressions. A flood hazard area may consist of the following components as determined by DDES: 100-year floodplain, zero-rise flood fringe, zero-rise floodway, FEMA floodway, and channel migration zones.

Geotechnical engineer means a civil engineer licensed by the State of Washington who has at least four years of professional employment as a geotechnical engineer in responsible charge, including experience with landslide evaluation. Geotechnical engineers specialize in the design and construction aspects of earth materials.

Land disturbing activity means any activity that results in a change in the existing soil cover, both vegetative and non-vegetative, or the existing soil topography. Land disturbing activities include, but are not limited to demolition, construction, clearing, grading, filling, excavation, and compaction. Land disturbing activity does not include tilling conducted as part of agricultural practices, landscape maintenance, or gardening.

Landslide hazard area is the critical area designation, defined and regulated in KCC 21A, that is applied to areas subject to severe risk of landslide due to topography, soil conditions, and geology. See the definition of this term in KCC 21A.06 for more details.

Engineering geologist means a person licensed by the State of Washington as a geologist specializing in evaluating geologic site characteristics to determine the responses of geologic processes and materials to development activities, such as removal of vegetation; construction activities such as earthwork; applying loads in foundations and embankments; use of earth materials in construction; and modifying ground water flow.

Native vegetated surface means a surface in which the soil conditions, ground cover, and species of vegetation are like those of the original native condition for the site. More specifically, this means (1) the soil is either undisturbed or has been treated according to the "native vegetated landscape" specifications in Appendix C, Section C.2.1.8; (2) the ground is either naturally covered with vegetation litter or has been top-dressed with 4 inches of hog fuel (or other suitable mulch) consistent with the native vegetated landscape specifications in Appendix C; and (3) the vegetation is either (a) comprised predominantly of plant species, other than noxious weeds, that are indigenous to the coastal region of the Pacific Northwest and that reasonably could have been expected to occur naturally on the site or (b) comprised of plant species specified for a native vegetated landscape in Appendix C. Examples of these plant species include trees such as Douglas fir, western hemlock, western red cedar, and

1 Critical area includes the following types of hazard or habitat areas defined and regulated in KCC 21A: coal mine hazard area, erosion hazard area, flood hazard area, landslide hazard area, seismic hazard area, steep slope hazard area, volcanic hazard area, aquatic area, wetland, wildlife habitat conservation area, wildlife habitat network, and critical aquifer recharge area.
alders, big-leaf maple and vine maple; shrubs such as willow, elderberry, salmonberry and salal; and herbaceous plants such as sword fern, foam flower, and fireweed.

New impervious surface means the addition of a hard or compacted surface like roofs, pavement, gravel, or dirt; or the addition of a more compacted surface, like paving over pre-existing dirt or gravel.

New pervious surface means the conversion of a native vegetated surface or other native surface to a non-native pervious surface (e.g., conversion of forest or meadow to pasture land, grass land, cultivated land, lawn, landscaping, bare soil, etc.), or any alteration of existing non-native pervious surface that significantly increases surface and storm water runoff (e.g., conversion of pasture land, grass land, or cultivated land to lawn, landscaping, or bare soil; or alteration of soil characteristics).

Pollution-generating impervious surface is an impervious surface considered to be a significant source of pollutants in surface and storm water runoff. Such surfaces include those subject to vehicular use (e.g., driveways, parking areas, roadways, etc.) or storage of erodible or leachable materials, wastes, or chemicals, and which receive direct rainfall or the run-on or blow-in of rainfall. Metal roofs are also considered pollution-generating impervious surface unless they are treated to prevent leaching. See the "Definitions" section of the SWDM for more details on this term.

Project site means that portion of a site and any offsite areas subject to proposed project activities, alterations, and improvements including those required by this appendix.

Replaced impervious surface means any existing impervious surface on the project site that is proposed to be removed and re-established as impervious surface, excluding impervious surface removed for the sole purpose of installing utilities or performing maintenance. For the purposes of this definition, removed means the removal of buildings down to bare soil or the removal of Portland cement concrete (PCC) slabs and pavement or asphaltic concrete (AC) pavement. It does not include the removal of pavement material through grinding or other surface modification unless the entire layer of PCC or AC is removed.

Single family residential project means any project that (a) constructs or modifies a single family dwelling unit, (b) makes improvements (e.g., driveways, roads, outbuildings, play courts, etc.) or clears native vegetation on a lot that contains or will contain a single family dwelling unit, or (c) is a plat, short plat, or boundary line adjustment that creates or adjusts lots that will contain single family dwelling units.

Site (a.k.a. development site), as used in this appendix, means a single parcel, or two or more contiguous parcels that are under common ownership or documented legal control, used as a single parcel for purposes of applying for authority from King County to carry out a development/project proposal.

Steep slope hazard area is the critical area designation, defined and regulated in KCC 21A, that is applied to areas on a slope of 40% or more within a vertical elevation change of at least 10 feet. See the definition of this term in KCC 21A.06 for more details.

Target impervious surface, as used in this appendix, means that portion of a site's impervious surface required to be mitigated by flow control BMPs. For projects on small sites/lots (<22,000 square feet), target impervious surface is as specified in Section C.1.3.1 (e.g., roof area or equivalent when applying the full dispersion or full infiltration flow control BMPs). For projects on large sites/lots (≥22,000 square feet), target impervious surface is all new impervious surface and replaced impervious surface together with any existing impervious surface added on or after January 8, 2001 (the effective date of the Endangered Species Act "take prohibition" issued by the federal government to protect Puget Sound Chinook salmon). Note: any impervious surface on the site other than target impervious surface may be mitigated by flow control BMPs in trade for not mitigating an equivalent-sized area of target impervious surface.
C.1 SMALL PROJECT DRAINAGE REVIEW REQUIREMENTS

Small Project Drainage Review is required for any proposed single family residential project or agricultural project that results in 2,000 square feet or more of new impervious surface, replaced impervious surface, or new plus replaced impervious surface, or 7,000 square feet or more of land disturbing activity, and meets one of the following criteria:

- The project will result in no more than 10,000 square feet of total impervious surface added on or after January 8, 2001 (the effective date of the Endangered Species Act “take prohibition” issued by the Federal government to protect Puget Sound Chinook Salmon), no more than 5,000 square feet of new impervious surface, and no more than 35,000 square feet of new pervious surface (for sites zoned as RA, F, or A, the new pervious surface threshold may be increased to 52,500 square feet or to the remaining portion of the site if 65% or more of the site is preserved in native vegetation by clearing limit, covenant, easement, or tract), OR

- The project will result in no more than 10,000 square feet of total impervious surface added on or after January 8, 2001 and its new pervious surface area will be no more than 35,000 square feet minus 3.25 times the area of new impervious surface being proposed by the project (for sites larger than 22,000 square feet, a factor of 2.25 may be used instead of 3.25, and for sites zoned as RA, F, or A, the allowable amount of new pervious surface calculated herein may be increased by 50% or may be the remaining portion of site if 65% or more of the site is preserved in native vegetation by clearing limit, covenant, easement, or tract), OR

- The project will result in no more than 4% total impervious surface and 15% new pervious surface on a single parcel site zoned as RA or F, or on a single or multiple parcel site zoned as A, AND all impervious surface area, except 10,000 square feet of it, will be set back from its natural location of discharge from the site at least 100 feet for every 10,000 square feet of total impervious area.

Note: for the purposes applying this threshold to a proposed single family residential subdivision (i.e., plat or short plat project), the impervious surface coverage assumed on each created lot shall be 4,000 square feet (8,000 square feet if the site is zoned as RA) or the maximum allowed by KCC 21A.12.030, whichever is less. A lower impervious surface coverage may be assumed for any lot in which the lower impervious surface coverage is set as the maximum through a declaration of covenant recorded for the lot. Also, the new pervious surface assumed on each created lot shall be the entire lot area, except the assumed impervious portion and any portion in which native conditions are preserved by a clearing limit per KCC 16.82, a covenant or easement recorded for the lot, or a tract dedicated by the proposed subdivision.

All projects subject to Small Project Drainage Review must comply with the following two basic mitigation requirements in this appendix:

1. Apply flow control BMPs to developed surfaces as directed in Section C.1.3 (p. C-13), and
2. Apply erosion and sediment control (ESC) measures to disturbed areas during construction as directed in Section C.1.4 (p. C-20).

To show how these requirements will be met, project applicants must submit drainage plans and supporting documentation as directed in Section C.1.5 (p. C-23).

In addition, some small projects may have site-specific or project-specific drainage concerns or requirements that must be addressed by a civil engineer or County engineering review staff. Examples include the presence of flood, erosion, or landslide hazards on or near the site, safe conveyance of stormwater through the site, and application of special drainage requirements. The County will identify any such issues during Small Project Drainage Review and will require a separate Targeted Drainage Review in addition to Small Project Drainage Review to address them (see Section C.1.2, p. C-9). This may require the additional submittal of site information, reports, and/or engineering plans signed and
stamped by a civil engineer. For more information on how Targeted Drainage Review relates to Small Project Drainage Review, see Reference Section C.5.1 (p. C-121).

Use Section C.1.1 (below) to determine the scope of requirements, if any, that must be addressed by a civil engineer and/or County engineering review staff under Targeted Drainage Review, and learn where to look to determine the scope of requirements for application of flow control BMPs and ESC measures and submittal of information necessary for Small Project Drainage Review.

C.1.1 PROCEDURE FOR DETERMINING REQUIREMENTS

The following questionnaire/flow chart (Table C.1.1.A) is intended to be a guide for determining the scope of requirements that will apply to a project in Small Project Drainage Review, and Targeted Drainage Review if applicable. It will refer or direct you to more specific information on the application of requirements found in subsequent subsections, and in some cases, King County Code.

<table>
<thead>
<tr>
<th>No.</th>
<th>Question</th>
<th>If YES</th>
<th>If NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Is the proposed project subject to drainage review as determined by consulting DDES(^2) or Section 1.1.1 of the SWDM.</td>
<td>Go to the next question.</td>
<td>The project does not need to meet the requirements of the SWDM or this appendix.</td>
</tr>
<tr>
<td>2.</td>
<td>Is the project subject to Small Project Drainage Review as determined in Section C.1 (p. C-5) and confirmed with DDES?</td>
<td>Step through the following questions to (1) determine the scope of requirements, if any, that must be addressed by a civil engineer and/or DDES under Targeted Drainage Review, and (2) learn where to look to determine the scope of requirements for application of flow control BMPs and ESC measures and submittal of information necessary for Small Project Drainage Review.</td>
<td>Full Drainage Review, Targeted Drainage Review, or Large Project Drainage Review is required as specified in the SWDM, and engineering plans signed and stamped by a civil engineer must be submitted to DDES. Use the SWDM and not this appendix to determine drainage review requirements.</td>
</tr>
<tr>
<td>3.</td>
<td>Does the site contain or is it adjacent to a flood hazard area as determined by DDES through a "critical area review" per KCC 21A.24.100?</td>
<td>A notice on title will be required as specified in KCC 21A.24.170 and associated public rule, and any proposed structures or substantial improvements within the 100-year floodplain will require a FEMA Elevation Certificate completed by a civil engineer or land surveyor per KCC 21A.24.270. See Section C.1.2.1 (p. C-10) for further details. Go to the next question.</td>
<td>Skip to Question 7 (p. C-8).</td>
</tr>
</tbody>
</table>

\(^2\) DDES means the King County Department of Development and Environmental Services, which is the department responsible for conducting drainage review of proposed projects that are subject to a King County development permit or approval. Applicants for a permit or approval should contact DDES permit review staff prior to submittal to determine/confirm that drainage review is required, and if so, what type of drainage review is appropriate. Applicants may also arrange a predesign meeting with DDES permit review staff to confirm the type of drainage review and scope of drainage requirements that apply to the proposed project.
TABLE C.1.1.A QUESTIONNAIRE/FLOW CHART FOR DETERMINING REQUIREMENTS

<table>
<thead>
<tr>
<th>No.</th>
<th>Question</th>
<th>If YES</th>
<th>If NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.</td>
<td>Has the 100-year floodplain boundary and base flood elevation(^3) been determined for the flood hazard area based on available flood hazard data and deemed acceptable by DDES in accordance with KCC 21A.24.230?</td>
<td>The floodplain boundary and base flood elevation must be shown on the project's site plans and on the face of any recorded documents if the project is a subdivision. See Section C.1.2.1 (p. C-10) for further details. Go to the next question.</td>
<td>A floodplain study in accordance with Section 4.4.2 of the SWDM must be completed by a civil engineer (or authorized agency) to determine the appropriate floodplain boundary and base flood elevation that will be used by DDES to evaluate the proposed project's compliance with the flood hazard area development standards in KCC 21A.24. See Section C.1.2.1 (p. C-10) for further details and requirements. Go to the next question.</td>
</tr>
<tr>
<td>5.</td>
<td>Is the project site portion of the site located on land that is entirely outside of the 100-year floodplain boundary and above the base flood elevation determined in Question 1?</td>
<td>Go to the next question.</td>
<td>The project site must be relocated to land that is outside of the 100-year floodplain and above the base flood elevation, or a civil engineer must evaluate and modify the project as needed to comply with the standards in KCC 21A.24 for development within the floodplain. This may require a major floodplain study in accordance with Section 4.4.2 of the SWDM to determine the floodway boundary of the flood hazard area. See Section C.1.2.1 (p. C-10) for further details and requirements. Go to the next question.</td>
</tr>
<tr>
<td>6.</td>
<td>Has a channel migration zone(^4) been mapped by King County for the flood hazard area?</td>
<td>The severe and moderate channel migration hazard area boundaries must be delineated on the project's site plans and on any recorded documents if the project is a subdivision. DDES will review the proposed project for compliance with the channel migration zone development standards in KCC 21A.24.275. Go to the next question.</td>
<td>Go to the next question.</td>
</tr>
</tbody>
</table>

\(^3\) Base flood elevation is the elevation of the 100-year floodplain, at the project site, that has been determined in accordance with the standards in KCC 21A.24.230.

\(^4\) Channel migration zone means those areas within the lateral extent of likely stream channel movement that are subject to risk due to stream bank destabilization, rapid stream incision, stream bank erosion and shifts in the location of stream channels, as shown on King County's Channel Migration Zone maps. The channel migration zone includes two additional components, the severe channel migration hazard area, which includes the present channel width plus the area at greatest risk of lateral movement, and the moderate channel migration hazard area, which is the remaining portion of the channel migration zone.
<table>
<thead>
<tr>
<th>No.</th>
<th>Question</th>
<th>If YES</th>
<th>If NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.</td>
<td>Does the site contain or is it adjacent to an erosion hazard area as determined by DDES through a "critical area review" per KCC 21A.24.100?</td>
<td>DDES may require additional flow control or ESC measures designed by a civil engineer to avoid impacts to these areas. See Section C.1.2.2 (p. C-11) for further details. Go to the next question.</td>
<td>Go to the next question.</td>
</tr>
<tr>
<td>8.</td>
<td>Does the site contain or is it adjacent to a steep slope hazard area or landslide hazard area as determined by DDES through a "critical area review" per KCC 21A.24.100?</td>
<td>DDES will review the project for compliance with the development standards for these hazard areas as specified in KCC 21A.24. The DDES staff geologist must approve all drainage systems for the project and may require a geotechnical analysis. A tightline designed by a civil engineer may be required to safely convey any concentrated runoff through the hazard area. See Section C.1.2.3 (p. C-11) for further details. Go to the next question.</td>
<td>Go to the next question.</td>
</tr>
<tr>
<td>9.</td>
<td>Is the project located in a basin planning area, community planning area, Critical Drainage Area (CDA), or other area with adopted area-specific drainage requirements AND does the project exceed the minimum thresholds for these drainage requirements as determined by DDES (see Section C.1.2.4, p. C-12)?</td>
<td>The project must meet the area-specific drainage requirements, some of which may require drainage systems or measures designed by a civil engineer. DDES will determine which requirements are applicable and if engineering plans signed and stamped by a civil engineer are required. Go to the next question</td>
<td>Go to the next question.</td>
</tr>
<tr>
<td>10.</td>
<td>Is the project proposing 1 acre or more of land disturbing activity (see Section C.1.2.5, p. C-12)?</td>
<td>ESC plans signed and stamped by a civil engineer are required to address compliance with the ESC standards for larger projects specified in the SWDM. Go to the next question.</td>
<td>Go to the next question.</td>
</tr>
<tr>
<td>11.</td>
<td>Is the project proposing to construct or modify a drainage pipe or ditch that is 12 inches or more in diameter/depth, or does the project site receive surface or storm water from a drainage pipe or ditch that is 12 inches or more in diameter/depth (see Section C.1.2.6, p. C-12)?</td>
<td>Engineering plans signed and stamped by a civil engineer are required to address compliance with the Targeted Drainage Review requirements pertaining to constructed or modified conveyance systems in the SWDM. Go to the next question.</td>
<td>Go to the next question.</td>
</tr>
<tr>
<td>12.</td>
<td>Are there any other drainage features onsite (swales, ditches, etc.) that may impact the proposed project or downstream properties or be impacted by the project?</td>
<td>Engineering analysis by a civil engineer may be required. DDES staff will need to assess features. Go to the next question.</td>
<td>Go to the next question.</td>
</tr>
</tbody>
</table>
TABLE C.1.1.A QUESTIONNAIRE/FLOW CHART FOR DETERMINING REQUIREMENTS

<table>
<thead>
<tr>
<th>No.</th>
<th>Question</th>
<th>If YES</th>
<th>If NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.</td>
<td>Is the proposed project on a sitelot smaller than 22,000 square feet?</td>
<td>Apply flow control BMPs in accordance with the Small Lot BMP Requirements in Section C.1.3.1 (p. C-13) and the Flow Control BMP Implementation Requirements in Section C.1.3.3 (p. C-18). Apply ESC measures in accordance with Section C.1.4 (p. C-20). Comply with the small project submittal requirements in Section C.1.5 (p. C-23).</td>
<td>Apply flow control BMPs in compliance with the Large Lot BMP Requirements in Section C.1.3.2 (p. C-15) and the Flow Control BMP Implementation Requirements in Section C.1.3.3 (p. C-18). Apply ESC measures in accordance with Section C.1.4 (p. C-20). Comply with the small project submittal requirements in Section C.1.5 (p. C-23).</td>
</tr>
</tbody>
</table>

C.1.2 TARGETED DRAINAGE REVIEW REQUIREMENTS

Targeted Drainage Review is usually required in addition to Small Project Drainage Review for any projects that have one or more of the following characteristics as determined by DDES:

- The project's drainage or improvements may impact or be impacted by the presence of certain critical areas (i.e., streams, lakes, wetlands, flood hazard areas, erosion hazard areas, steep slope hazard areas, and landslide hazard areas).
- The project is subject to additional drainage requirements by virtue of its location in areas where special drainage requirements have been adopted.
- The project proposes 1 acre or more of land disturbing activity.
- The project proposes to construct or modify a drainage pipe/ditch that is 12 inches or more in size or depth or receives runoff from a drainage pipe/ditch that is 12 inches or more in size or depth.
- The project has other concerns that require evaluation, analysis, and/or design by civil engineer.

For some small projects in Targeted Drainage Review, DDES permit review staff may be able to address some of the above concerns/requirements without a civil engineer through approval of the flow control BMPs/ESC measures in this appendix combined with increased setbacks, geotechnical review, or permit approval conditions. In other cases, a civil engineer will be required to address specific requirements in the SWDM and submit engineering plans.

Note: Targeted Drainage Review is not a substitute for a Critical Area Review. Small project proposals are not exempted from applicable requirements of KCC 21A.24 (critical areas regulations) including critical area reports, notices on title, buffers, building setbacks, and development standards/alterations.
C.1.2.1 FLOOD HAZARD AREAS

Some small projects may be on sites that contain or are adjacent to a flood hazard area for a stream, lake, wetland, closed depression, marine shoreline, or other water feature as determined by DDES through a critical area review. If the project is on such a site, the 100-year floodplain boundary and base flood elevation, at a minimum, must be determined and shown on the project's site plans and on the face of any recorded documents for a subdivision. If the flood hazard area includes a channel migration zone mapped by King County, the severe and moderate channel migration hazard area boundaries must also be delineated on the project's site plans and on any recorded documents if the project is a subdivision. DDES will review the proposed project for compliance with the channel migration zone development standards in KCC 21A.24.275.

The floodplain and base flood elevation may be identified from an already completed 100-year floodplain study approved by DDES in accordance with KCC 21A.24.230. Examples of approved floodplain studies include the Federal Emergency Management Agency (FEMA) mapping of the 100-year floodplain and base flood elevation, and floodplain mapping completed by the King County Department of Natural Resources, Water and Land Resources Division (WLRD).

If an approved floodplain study does not exist for the site, one must be prepared by a civil engineer in accordance with the methods and procedures in Section 4.4.2 of the SWDM. For some sites, if the project site is at least 10 feet above the ordinary high water mark or 2 feet above the downstream overflow elevation of a water feature, a simplified study per Section 4.4.2 may be used to identify an "approximate" floodplain boundary and base flood elevation. In some cases, DDES engineering review staff, in lieu of a civil engineer, may identify this approximate floodplain boundary and base flood elevation based on elevation information provided by the applicant's land surveyor.

If any portion of the project is within the 100-year floodplain, the 100-year floodway boundary must also be determined and shown on the project's site plans and on the face of any recorded documents for a subdivision. As with the floodplain boundary and base flood elevation, a floodplain study may be required in accordance with Section 4.4.2 of the SWDM to determine the floodway if one has not already been completed and approved by DDES for the site.

If the flood hazard area includes a King County-mapped channel migration zone, the two component channel migration hazard area boundaries (severe and moderate) must be shown on the project's site plans and on the face of any recorded documents for a subdivision.

DDES uses all of the flood hazard area information determined above to review a project for compliance with FEMA regulations and the County's flood hazard area regulations in KCC 21A.24. If DDES staff determines that the proposed project meets these regulations for building in or near a floodplain, the permit may be approved with specific conditions to ensure the project does not impact the floodplain and that a flood will have minimal impact on the project site. Examples of conditions could include:

- Building on a portion of the site where the existing ground is higher than the 100-year flood elevation,
- Building within the flood fringe using a pier or pile foundation to provide unrestricted flow through the foundation area,
- Placing no fill within any portion of the floodplain without providing equivalent compensating storage.

5 Closed depression means an area greater than 5,000 square feet at overflow elevation that is low-lying and that has no or such a limited surface water outlet that the area acts as a stormwater retention facility. The primary loss of water volume from a closed depression is through evapotranspiration and discharge into the ground rather than surface flow.

6 Note: for single family residential permits and permits for agricultural projects, DDES may waive the requirement for floodplain delineation on the site plan, provided the plan notes that a floodplain exists and indicates the base flood elevation.

7 Land surveyor means a person licensed by the State of Washington as a professional land surveyor.
For permits proposing a building within the 100-year floodplain, a "FEMA Elevation Certificate" must be completed by a civil engineer or land surveyor and submitted to DDES after the foundation is constructed but prior to the framing approval. The certificate documents the elevation of the lowest finished floor of the building as determined by or under the direction of a civil engineer or land surveyor. This certificate is often required by mortgage companies, and it helps the homeowner obtain proper flood insurance and maintain accurate insurance ratings for flood-prone areas.

Prior to permit approval (or in the case of a short plat, at or before recording), a notice on title must be recorded for the site (or the individual lots of a short plat project) as specified in KCC 21A.24.170 and its associated public rule. The notice on title must note that a flood hazard area exists and that no fill or alteration is allowed within the flood hazard area. The base flood elevation must also be noted.

If DDES staff determines that the proposed project does not meet FEMA or County regulations for building in or near a floodplain, the applicant may be required to hire a civil engineer to address compliance with these regulations. If the project site is partially or fully located in the mapped 100-year floodway, the permit may be denied as federal and County regulations prohibit building structures in the floodway.

C.1.2.2 EROSION HAZARD AREAS

Some projects may drain to or be on sites that contain an erosion hazard area, which is a critical area defined and regulated in KCC 21A. Vegetation removal and grading make erosion hazard areas prone to erosion and sediment transport, and the point discharge of stormwater runoff can cause erosion in such areas even if they are well vegetated. Small projects determined to drain to these areas may be required to provide additional flow control BMPs or other measures that must be engineered. In addition, more strict ESC measures may be required as well as a notice on title as specified in KCC 21A.24. If flow control and erosion and sediment control cannot be adequately addressed by the flow control BMPs and ESC measures in this appendix, DDES may require a civil engineer to provide a site-specific construction sequence and engineered site improvement/ESC plans.

C.1.2.3 STEEP SLOPE AND LANDSLIDE HAZARD AREAS

Some projects may drain to or be on sites that contain or are adjacent to a steep slope hazard area or a landslide hazard area. Storm runoff not properly controlled can cause erosion, landslides, raveling, and instability. Point discharge of runoff is not allowed near or onto these areas. Flow control BMPs may be allowed if installed according to the design requirements and specifications in Section C.2.

All drainage systems on or near steep slope hazard areas or landslide hazard areas must be approved by the DDES staff geologist.

If flow control BMPs are not adequate to prevent adverse impacts to a steep slope hazard area or landslide hazard area as determined by the DDES staff geologist, a tightline may be constructed to convey the runoff to a stable discharge point with adequate energy dissipation. The location of the discharge point must be onsite or within a drainage easement or public right-of-way. The tightline must conform to the materials and design requirements of Section 4.2 of the Surface Water Design Manual and must be approved by a geotechnical engineer, engineering geologist, or the DDES staff geologist.

Tightlines typically require design by a civil engineer in accordance with Section 4.2.2.1 of the Surface Water Design Manual. However, for a simple installation serving one lot, DDES engineering and/or geotechnical staff may provide a standardized design if they determine that the standardized tightline and energy dissipation system is appropriate. Note: For most small projects with less than 10,000 square feet of impervious surface, the tightline system may be constructed using 6-inch diameter "solid wall"

8 Point discharge means a concentrated flow from a pipe, ditch, or other similar drainage feature.

9 Tightline means a continuous length of pipe that conveys water from one point to another (typically down a steep slope) with no inlets or collection points in between.
polyethylene (SWPE) pipe” with a standard outfall. See Figure 4.2.2.D of the Surface Water Design Manual for an example tightline outfall.

C.1.2.4 ADOPTED AREA-SPECIFIC DRAINAGE REQUIREMENTS

Some projects may be subject to additional drainage requirements and/or engineering analysis by virtue of their location in an area where special drainage requirements have been adopted via a basin plan, salmon conservation plan, stormwater compliance plan, lake management plan, flood hazard reduction plan, etc. Projects located in such areas must comply with these requirements if the requirements are more stringent than the requirements of this appendix as determined by DDES.

Engineering analysis and/or engineering plans signed and stamped by a civil engineer may be required to comply with these requirements or show that the project is exempt or below the threshold for application of specific requirements. DDES staff will determine which requirements apply and the extent of engineering analysis required. When engineering analysis shows that a requirement threshold will not be exceeded, the project's applicant, contractors, and inspectors must be notified of any actions or limitations necessary to prevent that threshold from being exceeded.

C.1.2.5 ONE ACRE OR MORE OF LAND DISTURBING ACTIVITY

Small projects proposing 1 acre or more of land disturbing activity typically necessitate more expert attention to required ESC and other pollution prevention measures. Consequently, a construction stormwater pollution prevention (CSWPP) plan will need to be prepared in accordance with the CSWPP plan requirements for larger projects specified in Chapter 2 of the SWDM. In order to comply with these requirements, an engineered CSWPP plan and limited scope Technical Information Report (TIR) signed and stamped by a civil engineer will be required. DDES may waive this requirement if the site's topography is such that no more than 1 acre of disturbed area will drain to one location.

C.1.2.6 PIPES/DITCHES TWELVE INCHES OR MORE IN SIZE OR DEPTH

Small projects that propose to construct or modify a drainage pipe/ditch that is 12 inches or more in size or depth or that receive runoff from a drainage pipe/ditch that is 12 inches or more in size or depth, must submit engineering plans meeting the requirements outlined for Targeted Drainage Review Category #2 (see Section 1.1.2.2 of the Surface Water Design Manual). This requirement may be waived by DDES for driveway culverts less than 25 feet in length that match downstream and upstream culvert sizes.
C.1.3 APPLICATION OF FLOW CONTROL BMPS

Flow control BMPs are methods and designs for dispersing, infiltrating, or otherwise reducing or preventing development-related increases in runoff at or near the sources of those increases. Flow control BMPs include, but are not limited to, preservation and use of native vegetated surfaces to fully disperse runoff; use of other pervious surfaces to disperse runoff; roof downspout infiltration; permeable pavements; rainwater harvesting; vegetated roofs; and reduction of development footprint.

For projects subject to Small Project Drainage Review, the application of flow control BMPs is mandatory for individual lot projects (i.e., projects not subdividing land) and is optional for subdivision projects unless otherwise specified by DDES. For individual lot projects, flow control BMPs must be applied as specified by one of the following two sets of BMP requirements, whichever is applicable based on the size of site/lot:

- "Small Lot BMP Requirements" (for sites/lots <22,000 square feet), Section C.1.3.1
- "Large Lot BMP Requirements" (for sites/lots ≥22,000 square feet), Section C.1.3.2

These requirements specify both the order of preference for selection of flow control BMPs and their extent of application to the developed surfaces of an individual lot project. This application of requirements is illustrated by the flow chart in Figure C.1.3.A (p. C-123). In addition, the implementation of flow control BMPs by projects on either size of site/lot must be in accordance with the "BMP Implementation Requirements" detailed in Section C.1.3.3.

If the proposed project is a single family residential subdivision (i.e., plat or short plat project), the application of flow control BMPs for future anticipated improvements on the lots created by the subdivision may be deferred until an individual lot project is proposed for permit approval on each lot. Alternatively, the BMPs required for anticipated improvements on each lot may be installed as part of the subdivision project if the applicant so chooses. In either case, the required application of BMPs, in terms of order of preference and extent of application to developed surfaces, is the same as that for an individual lot project (i.e., as specified in Sections C.1.3.1 or C.1.3.2, and C.1.3.3).

Note: road right-of-way improvements constructed as part of a subdivision project may require implementation of flow control BMPs or other mitigation as determined necessary by DDES.

C.1.3.1 SMALL LOT BMP REQUIREMENTS

Any proposed project that is on an individual site/lot smaller than 22,000 square feet must comply with the flow control BMP application requirements in this section.

A. MITIGATION OF IMPERVIOUS SURFACE

For projects subject to small lot BMP requirements, flow control BMPs must be applied to the project's target impervious surface according to the order of preference and extent of application specified in the following requirements:

1. The feasibility and applicability of full dispersion as detailed in Section C.2.1 (p. C-26) must be evaluated for the roof area (or an impervious area of equivalent size) on the site/lot. If feasible and applicable, full dispersion of roof runoff must be implemented as part of the proposed project. Typically, small lot full dispersion will be applicable only in subdivisions where enough forest was preserved by tract, easement, or covenant to meet the minimum requirements for full dispersion in Section C.2.1.1 (p. C-26). If this first requirement is met for the site/lot, no other flow control BMPs are required for mitigation of impervious surface, and the remaining requirements below are optional.

2. Where full dispersion of roof runoff (or equivalent) is not feasible or applicable, or will cause flooding or erosion impacts, the feasibility and applicability of full infiltration as detailed in Section C.2.2 (p. C-41) must be evaluated for roof runoff (note, this will require a soils report for the site/lot).
If feasible and applicable, full infiltration of roof runoff must be implemented as part of the proposed project. If this requirement or the full dispersion requirement above is met for the site/lot, no other flow control BMPs are required, and the remaining requirements below are optional.

3. Where full dispersion or full infiltration of roof runoff as specified in Requirements 1 and 2 above is not feasible or applicable, or will cause flooding or erosion impacts, one or more of the following BMPs must be applied to (or used to mitigate for) an impervious area equal to at least 10% of the site/lot for site/lot sizes up to 11,000 square feet and at least 20% of the site/lot for site/lot sizes between 11,000 and 22,000 square feet. For projects located within a critical aquifer recharge area,10 these impervious area amounts must be doubled. The BMPs listed below may be located anywhere on the site/lot subject to the limitations and design specifications for each BMP. These BMPs must be implemented as part of the proposed project.

- **Limited Infiltration** (see Section C.2.3)
- **Basic Dispersion** (see Section C.2.4),
- **Rain Garden** (see Section C.2.5),
- **Permeable Pavement** (see Section C.2.6),
- **Rainwater Harvesting** (see Section C.2.7),
- **Vegetated Roof** (see Section C.2.8),
- **Reduced Impervious Surface Credit** (see Section C.2.9),
- **Native Growth Retention Credit** (see Section C.2.10).

4. Any proposed pipe connection of roof downspouts to the local drainage system11 must be via a perforated pipe connection as detailed in Section C.2.11.

B. MITIGATION OF NEW PERVIOUS SURFACE

For projects subject to small lot BMP requirements, no flow control BMPs are required for new pervious surface. Note, however, that KCC 16.82.100(G) requires amendment of the soil to mitigate for lost moisture holding capacity in any area that has been compacted or that has had some or all of the duff layer or underlying topsoil removed. The amendment must be such that the replaced topsoil is a minimum of 8 inches thick, unless the applicant demonstrates that a different thickness will provide conditions equivalent to the soil moisture holding capacity native to the site. The replaced topsoil must have an organic content of 8-13% dry weight and a pH suitable for the proposed surface vegetation (for most soils in King County, 4 inches of well-rotted compost tilled into the top 8 inches of soil is sufficient to achieve the organic content standard). The amendment must take place between May 1 and October 1.

C. MITIGATION OF WATER QUALITY IMPACTS

For projects subject to small lot BMP requirements, most water quality impacts will be adequately addressed through proper application of flow control BMPs to impervious surface as specified above. However, if the project results in 5,000 square feet or more of new pollution-generating impervious surface from which runoff is not fully dispersed in accordance with Section C.2.1 (p. C-26), then one of the following actions must be taken:

10 **Critical aquifer recharge area** is the critical area designation, defined and regulated in KCC 21A, that is applied to areas where extra protection of groundwater quantity and quality is needed because of known susceptibility to contamination and importance to drinking water supply. Such areas are delineated on the King County Critical Aquifer Recharge Area Map available at DDES or on the County's Geographic Information System (GIS). See the definition of this term in KCC 21A.06 for more details.

11 **Local drainage system** means any natural or constructed drainage feature that collects and concentrates runoff from the site and discharges it downstream.
• Reduce existing or proposed *pollution-generating impervious surface* so that the 5,000-square-foot threshold is not triggered (e.g., reduce the amount of metal roofing that is pollution-generating), or

• Provide a water quality facility designed by a *civil engineer* in accordance with Section 1.2.8 of the SWDM to treat the runoff that is not fully dispersed from all *new pollution-generating impervious surface*.

C.1.3.2 LARGE LOT BMP REQUIREMENTS

Any proposed project that is on an individual *site/lot greater than or equal to 22,000 square feet* must comply with the flow control BMP application requirements in this section. *Note that projects applying for a Rural Stewardship Plan or Farm Management Plan as allowed in KCC 21A.24 to reduce buffer requirements or clearing standards may be required to implement additional flow control BMPs to mitigate for lost habitat functions.*

A. MITIGATION OF IMPERVIOUS SURFACE

For projects subject to large lot BMP requirements, flow control BMPs must be applied to the project's *target impervious surface* according to the order of preference and extent of application specified in the following requirements:

1. The feasibility and applicability of *full dispersion* as detailed in Section C.2.1 (p. C-26) must be evaluated for all *target impervious surface*. If feasible and applicable, full dispersion must be implemented as part of the proposed project. Typically, full dispersion will be applicable only to *sites/ lots* or portions of *sites/ lots* where enough forest is preserved by a clearing limit per KCC 16.82 or by recorded tract, easement, or covenant to meet the minimum requirements for full dispersion in Section C.2.1.1 (p. C-26). If this requirement for full dispersion is met for all *target impervious surface* of the project, no other flow control BMPs are required.

2. For that portion of *target impervious surface* where full dispersion is not feasible or applicable, or will cause flooding or erosion impacts, the feasibility and applicability of *full infiltration of roof runoff* as detailed in Section C.2.2 (p. C-41) must be evaluated (*note, this will require a soils report for the site/lot*). If feasible and applicable, full infiltration of roof runoff must be implemented as part of the proposed project.

3. For that portion of *target impervious surface* not addressed by Requirements 1 and 2 above, *one or more of the following BMPs* must be implemented as part of the proposed project:
 - Limited Infiltration (see Section C.2.3),
 - Basic Dispersion (see Section C.2.4),
 - Rain Garden (see Section C.2.5),
 - Permeable Pavement (see Section C.2.6),
 - Rainwater Harvesting (see Section C.2.7),
 - Vegetated Roof (see Section C.2.8),
 - Reduced Impervious Surface Credit (see Section C.2.9),
 - Native Growth Retention Credit (see Section C.2.10).

4. Any proposed pipe connection of roof downspouts to the local drainage system must be via a *perforated pipe connection* as detailed in Section C.2.11.
B. MITIGATION OF NEW PERVIOUS SURFACE

For projects subject to large lot BMP requirements, flow control BMPs are required for all *new pervious surface* when it exceeds 35,000 square feet. Flow control BMPs must be applied to *new pervious surface* according to the order of preference and extent of application specified in the following requirements:

1. The feasibility and applicability of **full dispersion** as detailed in Section C.2.1 (p. C-26) must be evaluated for all *new pervious surface*. If feasible and applicable, full dispersion must be implemented as part of the proposed project. Typically, full dispersion will be applicable only to sites/lots or portions of sites/lots where enough forest is preserved by a clearing limit per KCC 16.82 or by recorded tract, easement, or covenant to meet the minimum requirements for full dispersion in Section C.2.1.1 (p. C-26). If this requirement for full dispersion is met for all pervious surfaces of the project, no other flow control BMPs are required.

2. For that portion of *new pervious surface* not addressed in Requirement 1 above, **one or more of the following BMPs** must be implemented as part of the proposed project. This requirement may be waived or reduced where DDES determines that the requirement is not practicable or will cause flooding or erosion impacts.
 - **Basic Dispersion** (see Section C.2.4),
 - **Rain Garden** (see Section C.2.5).

Note: In addition to the above requirements, KCC 16.82.100(G) requires amendment of the soil to mitigate for lost moisture holding capacity in any area that has been compacted or that has had some or all of the duff layer or underlying topsoil removed. The amendment must be such that the replaced topsoil is a minimum of 8 inches thick, unless the applicant demonstrates that a different thickness will provide conditions equivalent to the soil moisture holding capacity native to the site. The replaced topsoil must have an organic content of 8-13% dry weight and a pH suitable for the proposed surface vegetation (for most soils in King County, 4 inches of well-rotted compost tilled into the top 8 inches of soil is sufficient to achieve the organic content standard). The amendment must take place between May 1 and October 1.

C. MITIGATION OF WATER QUALITY IMPACTS

For projects subject to large lot BMP requirements, most water quality impacts will be adequately addressed through proper application of flow control BMPs to impervious and pervious surfaces as specified above. However, if the project results in 5,000 square feet or more of *new pollution-generating impervious surface* from which runoff is not fully dispersed in accordance with Section C.2.1 (p. C-26), then one of the following actions must be taken:

- Reduce existing or proposed *pollution-generating impervious surface* so that the 5,000-square-foot threshold is not triggered (e.g., reduce the amount of metal roofing that is pollution-generating), or
- Provide a water quality facility designed by a **civil engineer** in accordance with Section 1.2.8 of the SWDM to treat the runoff that is not fully dispersed from all *new pollution-generating impervious surface*.
FIGURE C.1.3.A FLOWCHART FOR DETERMINING APPLICATION OF FLOW CONTROL BMPS

Is the project on a site/lot smaller than 22,000 square feet?

Yes

No

Is it feasible and applicable to implement full dispersion for the roof area as per Section C.2.1?

Yes

No further BMPs required.

Note: Any proposed connection of roof downspouts to local drainage system must be via perforated pipe connection per Section C.2.11.

Is it feasible and applicable to implement full infiltration of the roof runoff as per Section C.2.2?

No

Is there any remaining target impervious surface not addressed with full dispersion or with full infiltration of roof runoff?

No

Yes

One or more of the following BMPs must be implemented for target impervious surface not addressed with full dispersion or with full infiltration of roof runoff:

1. Full Infiltration (Section C.2.2)
2. Limited Infiltration (Section C.2.3)
3. Basic Dispersion (Section C.2.4)
4. Rain Garden (Section C.2.5)
5. Permeable Pavement (Section C.2.6)
6. Rainwater Harvesting (Section C.2.7)
7. Vegetated Roof (Section C.2.8)
8. Reduced Impervious Service Credit (Section C.2.9)
9. Native Growth Retention Credit (Section C.2.10)

Notes:
No flow control BMPs are required for new pervious surfaces.
Water quality impacts are adequately addressed with the above flow control BMPs. Comply with last note box below.

The project must be a site/lot greater than or equal to 22,000 square feet?

Yes

No

Is it feasible and applicable to implement full dispersion on all target impervious surface as per Section C.2.1?

Yes

No further BMPs required. Note: Any proposed connection of roof downspouts to local drainage system must be via perforated pipe connection per Section C.2.11.

Is it feasible and applicable to implement full infiltration of the roof runoff as per Section C.2.2?

No

Yes

One or more of the following BMPs must be implemented for target impervious surface not addressed with full dispersion or with full infiltration of roof runoff:

1. Full Infiltration (Section C.2.2)
2. Limited Infiltration (Section C.2.3)
3. Basic Dispersion (Section C.2.4)
4. Rain Garden (Section C.2.5)
5. Permeable Pavement (Section C.2.6)
6. Rainwater Harvesting (Section C.2.7)
7. Vegetated Roof (Section C.2.8)
8. Reduced Impervious Service Credit (Section C.2.9)
9. Native Growth Retention Credit (Section C.2.10)

Notes:
Flow control BMPs are required for all new pervious surface when it exceeds 35,000 sf. Flow control BMPs must be applied in the following order of preference:
1. The feasibility and applicability of full dispersion as detailed in Section C.2.1 must be evaluated for all new pervious surfaces.
2. For those pervious surfaces not addressed in Requirement 1 above, one or more of the following BMPs must be implemented:
 Basic Dispersion (Section C.2.4)
 Rain Garden (Section C.2.5)

Note:
The following extra water quality provisions must be implemented if the project results in 5,000 sf or more of additional pollution generating impervious surface from which runoff is not fully dispersed in accordance with Section C.2.1:
1. Reduce existing or proposed pollution generating impervious surface so that the 5,000 sf threshold is not triggered.
2. Provide water quality facilities designed by a licensed civil engineer in accordance with Section 1.2.8 of the SWDM.
C.1.3.3 FLOW CONTROL BMP IMPLEMENTATION REQUIREMENTS

The flow control BMPs required in Section C.1.3.1 or C.1.3.2 above must be implemented in accordance with the following requirements:

1. **Implementation Responsibility.** All flow control BMPs required for the *site/lot* must be implemented (installed) by the applicant as part of the proposed project unless they have already implemented as part of a subdivision project (e.g., plat or short plat) that created the lot.

2. **Maintenance Responsibility.** Maintenance of all required flow control BMPs is the responsibility of the owner of the *site/lot* served by these BMPs. The responsibility for such maintenance must be clearly assigned to the current and future owners of the *site/lot* through a "declaration of covenant and grant of easement" as described in Requirement 3 below.

3. **Declaration of Covenant and Grant of Easement.** A declaration of covenant and grant of easement must be recorded for each *site/lot* that contains flow control BMPs. A draft of the proposed covenant must be reviewed and approved by DDES prior to recording. All required covenants must be recorded prior to final construction approval for the proposed project. The covenant in Reference Section C.5.2, p. C-125, (or equivalent) must be used, and is designed to achieve the following:
 a) Provide notice to future owners of the presence of flow control BMPs on the lot and the responsibility of the owner to retain, uphold, and protect the flow control BMP devices, features, pathways, limits, and restrictions.
 b) Include as an exhibit, a recordable version\(^{12}\) of the following drainage plan information:
 - The **flow control BMP site plan** showing all developed surfaces (impervious and pervious) and the location and dimensions of flow control BMP devices, features, flowpaths (if applicable), and limits of native growth retention areas (if applicable). This plan(s) must be to scale and include *site* topography in accordance with the specifications for such plans in Section C.4.2 (p. C-113). Note: DDES may waive this element if, for example, the only flow control BMP proposed is a limit on impervious surface (reduced footprint).
 - The **flow control BMP design and maintenance details** for each flow control BMP per Section C.4.3 (p. C-117). This includes a diagram (if applicable) of each flow control BMP device or feature and written maintenance and operation instructions and restrictions for each device, feature, flowpath (if applicable), native growth retention area (if applicable) and impervious surface coverage (if applicable).
 c) Require that each flow control BMP be operated and maintained at the owner's expense in accordance with the above exhibit.
 d) Grant King County or its successor the **right to enter** the property at reasonable times for purposes of inspecting the flow control BMPs and to perform any corrective maintenance, repair, restoration, or mitigation work on the flow control BMPs that has not been performed by the property owner within a reasonable time set by DNRP, and to charge the property owner for the cost of any maintenance, repair, restoration, or mitigation work performed by King County.
 e) Prohibit any **modification or removal** of flow control BMPs without written approval from King County. In cases where the modification or removal is done under a King County development permit, the approval must be obtained from DDES (or its successor) and a covenant must be recorded to reflect the changes. In all other cases, the approval must be obtained from DNRP (or its successor) and a covenant must be recorded to reflect the changes. Approval will be granted only if equivalent protection in terms of hydrologic performance is provided by other means.

\(^{12}\) *Recordable version* means one that meets King County's "Standard Formatting Requirements for Recording Documents" pursuant to RCW 36.18.010 and 65.04.045, available online and from the King County Recorder's Office. These requirements include specifications for such things as page size (8½" x 14" or smaller), font size (at least 8-point), and margin width (1" on all sides of every page if there is a standard cover sheet).
4. **Timing of Implementation.** All required flow control BMPs must be installed prior to final inspection approval of constructed improvements. For BMPs that rely on vegetation, the vegetation must be planted and starting to grow prior to final construction approval.

5. **Acceptance Standards.** Flow control BMPs may be inspected during and/or following construction. Approval of the constructed BMPs will be based on verification that the materials and placement appear to meet the specifications and that the BMPs appear to function as designed. Onsite observations may be used to verify that materials are as specified and material receipts checked. Performance may be evaluated by a site visit while it is raining or by testing with a bucket of water or garden hose to check pavement permeability or proper connection to BMP devices/features, etc.

6. **Drainage Concerns.** If DDES determines that there is a potential for drainage impacts to a neighboring property or critical area, then additional measures may be required. Some flow control BMPs may not be appropriate in certain situations, and will not be allowed by DDES where they may cause drainage problems.

7. **Geotechnical Concerns.** A geotechnical engineer, engineering geologist, or DDES staff geologist must evaluate flow control BMPs proposed on slopes steeper than 15%. In addition, DDES may require review by a geotechnical engineer or engineering geologist of any proposed BMP within 50 feet of a slope steeper than 15%. DDES may also require some projects to route flows down or around such slopes using non-perforated pipes. Some flow control BMPs may not be appropriate for these locations, and will not be allowed by DDES where flows may cause erosion problems.

8. **Sewage System Concerns.** If DDES determines that there is a potential conflict between onsite sewage systems and flow control BMPs, additional measures may be required. Some projects may need to route flows past onsite sewage systems using non-perforated pipes. Also, some flow control BMPs may not be appropriate for these sites, and will not be allowed where sewage systems may be impacted.

9. **Engineering Concerns.** While most of the flow control BMPs in this appendix can be implemented by a non-engineer, there are some that have structural components that must be designed or evaluated by a civil engineer or structural engineer. When a BMP is proposed that has such components as identified in Section C.2, DDES may require submittal of engineering plans for that component signed and stamped by a civil engineer or structural engineer.

10. **Connection to Subsurface Drains.** Flow control BMPs should not be connected to subsurface drains (e.g., footing drains) as these connections may adversely affect the performance of the BMPs, and in some cases may cause reverse flow into the footing drains during storm events.

11. **Small Project Drainage Plan.** The type, size, and placement of proposed flow control BMPs are to be shown on the flow control BMP site plan portion of the small project drainage plan submitted for the proposed project. This plan must be in accordance with the specifications for such plans outlined in Section C.4 (p. C-111) unless otherwise directed by DDES.

13 Structural engineer means a person licensed by the State of Washington as a professional civil engineer specializing in structural engineering.
C.1.4 APPLICATION OF ESC MEASURES

It is the responsibility of both the applicant and contractor to prevent the erosion and transport of sediment and other construction-related pollutants to the maximum extent practicable. Erosion and sediment control (ESC) measures must be used both during and after construction as specified in this section.

For projects subject to Small Project Drainage Review and disturbing less than 1 acre of land, the application of ESC measures must be in accordance with the "Small Site ESC Requirements" in Section C.1.4.1 and the "ESC Implementation Requirements" in Section C.1.4.2. The ESC Small Site Requirements specify the types of measures that must be considered for application to the construction site based on project-specific site features, soil conditions, weather conditions, time of year, and construction activities. The ESC implementation requirements are generally applicable to all small projects disturbing less than 1 acre.

C.1.4.1 SMALL SITE ESC REQUIREMENTS

For projects in Small Project Drainage Review that disturb less than 1 acre of land, all of the following small site ESC requirements must be evaluated for applicability to the proposed project:

A. MARK CLEARING LIMITS/MINIMIZE CLEARING

Prior to beginning land disturbing activities, all clearing limits, sensitive areas and their buffers, and trees that are to be preserved within the construction area shall be clearly marked, both in the field and on the small site ESC plan, to prevent damage and offsite impacts. Also, clearing shall be minimized to the maximum extent practicable. See "Mark Clearing Limits/Minimize Clearing," Section C.3.5, for more detailed specifications.

B. MINIMIZE SEDIMENT TRACKED OFFSITE

1. Establish a stabilized entrance for construction vehicle access to minimize the tracking of sediment onto public roads. Entrance and exit shall be limited to one route, if possible. See "Stabilized Construction Entrance," Section C.3.1, for detailed specifications.

2. If sediment is tracked offsite, public roads shall be cleaned thoroughly at the end of each day, or more frequently during wet weather, if necessary to prevent sediment from entering waters of the state. Sediment shall be removed from roads by shoveling or pickup sweeping and shall be transported to a controlled sediment disposal area. Street washing will be allowed only after sediment is removed in this manner. Street wash wastewater shall be controlled by pumping back onsite, or otherwise be prevented from discharging into drainage systems tributary to surface waters. This requirement shall be included as a note on the small site ESC plan.

C. CONTROL SEDIMENT

Runoff from disturbed areas must pass through a sediment control measure to prevent the transport of sediment downstream until the disturbed area is fully stabilized. Sediment controls must be installed as one of the first steps in grading and shall be functional before other land disturbing activities take place. One or more the following sediment controls may be used to meet this requirement:

- Silt Fence (See Section C.3.6)
- Vegetated Strip (See Section C.3.7)
- Triangular Silt Dike (See Section C.3.8)
- Storm Drain Inlet Protection (See Section C.3.9)
D. STABILIZE EXPOSED SOILS

All exposed and unworked soils shall be stabilized through the application of cover measures to protect the soil from the erosive forces of raindrop impact, flowing water, and wind erosion. One or more of the following cover measures may be used to meet this requirement during the construction phase:

- **Mulching** (See Section C.3.2)
- **Nets and Blankets** (See Section C.3.3)
- **Plastic Covering** (See Section C.3.4)
- **Seeding** (See Section C.3.10)
- **Sodding** (See Section C.3.11)

Cover measures shall be applied in accordance with the following requirements:

1. Cover measures must be installed if an area is to remain unworked for more than seven days during the dry season (May 1 to September 30) or for more than two consecutive working days during the wet season (October 1 to April 30). These time limits may be relaxed if an area poses a low risk of erosion due to soil type, slope gradient, anticipated weather conditions, or other factors. Conversely, the County may reduce these time limits if site conditions warrant greater protection (e.g., adjacent to significant aquatic resources or highly erosive soils) or if significant precipitation is expected.

2. Any area to remain unworked for more than 30 days shall be seeded or sodded unless the County determines that winter weather makes vegetation establishment infeasible. During the wet season, exposed ground slopes and stockpile slopes with an incline of 3 horizontal to 1 vertical (3H:1V) or steeper and with more than ten feet of vertical relief shall be covered if they are to remain unworked for more than 12 hours. Also during the wet season, the material necessary to cover all disturbed areas must be stockpiled on site. The intent of these cover requirements is to have as much area as possible covered during any period of precipitation.

E. CONTROL RUNOFF

Stormwater runoff originating on the site and/or entering the site from offsite areas must be controlled so as to minimize erosion of disturbed areas and exposed cut and fill slopes. The following runoff control measures shall be used as needed per the conditions of use and specifications for each measure:

- **Interceptor Dikes and Swales** (see Section C.3.12 for conditions of use and specifications)
- **Ditches** (see Section C.3.13 for conditions of use and specifications)
- **Pipe Slope Drain** (see Section C.3.14 for conditions of use and specifications)

F. CONTROL DEWATERING

Accumulated water in foundation areas, excavations, and utility trenches shall be removed and disposed of in a manner that does not pollute surface waters or cause downstream erosion or flooding. See "Dewatering Control," Section C.3.15 for detailed specifications.

G. CONTROL OTHER POLLUTANTS

All construction activities shall be done in a manner that prevents pollution of surface waters and ground waters as specified in the King County's *Stormwater Pollution Prevention Manual (SPPM)*. See "Control of Other Pollutants," Section C.3.16, for specific measures and references to applicable activity sheets in the *SPPM*. References to applicable activity sheets in *SPPM* shall be included in the small site ESC plan.
H. FINAL STABILIZATION

1. Prior to final construction approval, the project site shall be stabilized to prevent sediment-laden water from leaving the project site after project completion. All disturbed areas of the project site shall be vegetated or otherwise permanently stabilized. At a minimum, disturbed areas must be seeded and mulched to ensure that sufficient cover will develop shortly after final approval. Mulch without seeding is adequate for small areas to be landscaped before October 1.

2. All temporary ESC measures shall be removed within 30 days after final site stabilization is achieved or after the temporary measures are no longer needed. Trapped sediment shall be removed or stabilized onsite. Disturbed soil areas resulting from removal of measures or vegetation shall be permanently stabilized with seeding or sodding.

C.1.4.2 ESC IMPLEMENTATION REQUIREMENTS

Projects in Small Project Drainage Review that disturb less than 1 acre of land must implement the ESC measures determined necessary in Section C.1.4.1 in accordance with the following requirements:

1. The placement and type of proposed ESC measures are to be shown on the small site ESC plan portion of the small project drainage plan submitted for the proposed project. This plan must be in accordance with the specifications for such plans outlined in Section C.4 (p. C-111) unless otherwise directed by DDES.

2. If DDES finds that implementation of the proposed small site ESC plan is insufficient to prevent the discharge of sediment or other pollutants to the maximum extent practicable, additional measures will be required by DDES. In some cases, an ESC plan or a complete Construction Stormwater Pollution Plan prepared by a civil engineer per Chapter 2 of the SWDM may be required.

3. The contractor or other persons performing construction activities shall comply with the stormwater pollution prevention measures/BMPs specified for such activities in the King County Stormwater Pollution Prevention Manual. A note to this effect must be put on the approved ESC plan.

4. Prior to commencing construction, the applicant must identify to the County a contact person responsible for overseeing the installation and maintenance of required ESC measures and compliance with the Stormwater Pollution Prevention Manual during construction. The name and contact information for this person must be on or attached to small site ESC plan at the time of construction.

5. Both the applicant and contractor are responsible for implementation and maintenance of the approved small site ESC plan and any additional measures required by the County.

6. The small site ESC plan shall be retained onsite or within reasonable access to the site. The plan shall be modified whenever there is a significant change in the design, construction, operation, or maintenance at the construction site that has, or could have, a significant effect on the discharge of pollutants to surface waters. The plan shall be modified, if during inspections or investigations conducted by the County, it is determined that the plan is ineffective in eliminating or significantly minimizing pollutants in stormwater discharges from the site. The plan shall be modified as necessary to include additional or modified measures designed to correct problems identified.
C.1.5 SMALL PROJECT SUBMITTAL REQUIREMENTS

For projects in Small Project Drainage Review, the items listed below must be submitted to DDES for review unless the item is not applicable or necessary as specified for that item below or as determined by DDES. See Section C.5.1 (p. C-121) for a description of the DDES permit review process for Small Project Drainage Review.

1. A small project drainage plan, which includes the components specified in Section C.4 (p. C-111) unless otherwise directed by DDES. These components vary depending on whether the project is an individual lot development or a subdivision. For most projects in Small Project Drainage Review (i.e., individual lot projects), the required components of a small project drainage plan include a flow control BMP site plan, flow control BMP design and maintenance details, a small site ESC plan, and a written drainage assessment with supporting documentation (e.g., soils report, special studies, etc). Note: small project subdivisions that do not require engineering plans or analysis will typically be asked to complete small project drainage plans prior to preliminary approval of the subdivision. Projects submitting small project drainage plans after preliminary approval must include in the written assessment a discussion of any changes made to the project after preliminary approval.

2. A draft of the declaration of covenant and grant of easement required to be recorded for application of flow control BMPs on an individual site/lot in accordance with Requirement 3 of Section C.1.3.3.

3. A copy of any recorded covenant that limits the amount of impervious surface or clearing on the site for purposes of qualifying for Small Project Drainage Review. If one does not exist or does not include provisions for County inspection, it must be combined with the covenant required for application of flow control BMPs.

4. An engineering plan and technical information report signed and stamped by a civil engineer if needed to address targeted drainage review requirements identified in Section C.1.1 and described in Section C.1.2. The specifications for such plans and reports are found in Chapter 2 of the SWDM.
C.2 FLOW CONTROL BMPs

This section presents the minimum design requirements and specifications for each type of flow control BMP. Flow control BMPs are methods and designs for dispersing, infiltrating, or otherwise reducing or preventing development-related increases in runoff at or near the sources of those increases. Flow control BMPs include, but are not limited to, preservation and use of native vegetated surface to fully disperse runoff; use of other pervious surfaces to disperse runoff; roof downspout infiltration; permeable pavements; rainwater harvesting; vegetated roofs; and reduction of development footprint.

Intent of Flow Control BMPs

The primary intent of flow control BMPs is to mitigate the hydrologic impacts of impervious surface, which means preventing or reducing the increased runoff peaks, volumes, and loss of groundwater recharge associated with conversion of forest or grassland to impervious surface. Such impacts are known to cause or contribute to downstream flooding, erosion, sedimentation, loss of aquatic habitat, and loss of groundwater available for human consumption and summer stream flows necessary for fish use.

The secondary intent of flow control BMPs is to mitigate the water quality impacts of impervious surface and in some cases, new pervious surface, where the new pervious surface exceeds 35,000 square feet.

Some flow control BMPs are more effective than others at minimizing hydrologic impacts and are given preference in the BMP application requirements. For example, where substantial amounts of native vegetation are being retained onsite, "full dispersion" of runoff is the preferred or required BMP if it can be implemented onsite per the minimum design requirements and specifications in Section C.2.1 (p. C-26).

Organization of Section C.2

Section C.2 is organized as follows:

- Section C.2.1, "Full Dispersion" (p. C-26)
- Section C.2.2, "Full Infiltration" (p. C-41)
- Section C.2.3, "Limited Infiltration" (p. C-49)
- Section C.2.4, "Basic Dispersion" (p. C-51)
- Section C.2.5, "Rain Garden" (p. C-59)
- Section C.2.6, "Permeable Pavement" (p. C-64)
- Section C.2.7, "Rainwater Harvesting" (p. C-68)
- Section C.2.8, "Vegetated Roof" (p. C-71)
- Section C.2.9, "Reduced Impervious Surface Credit" (p. C-74)
- Section C.2.10, "Native Growth Retention Credit" (p. C-78)
- Section C.2.11, "Perforated Pipe Connection" (p. C-80)

Other Resources

Other resources are available that may be helpful in the design of flow control BMPs. The state Department of Ecology Stormwater Management Manual for Western Washington (August 2001) and the Puget Sound Water Quality Action Team's Low Impact Development Technical Guidance Manual for Puget Sound (January 2005) are both good references and sources of ideas. For many of the above BMPs, these manuals may provide much more design information than is presented in this appendix. Where such information conflicts with the minimum design requirements and specifications contained herein, King County's standards shall govern.
C.2.1 FULL DISPERSION

Full dispersion is a BMP strategy for minimizing the area of onsite developed surface (i.e., impervious or non-native pervious surface) relative to native vegetated surface (e.g., forested surface) together with the application of dispersion techniques that utilize the natural capacity of the native vegetated surface to mitigate the runoff quantity and quality impacts of the developed surfaces. Developed surfaces that meet the minimum requirements and specifications for full dispersion as set forth in this section are referred to as fully dispersed surfaces. As specified in the SWDM, fully dispersed impervious surface is not subject to the "flow control facility requirement." Similarly, any pollution-generating impervious surface or pervious surface that is fully dispersed is not subject to the water quality facility requirements of the SWDM.

Applicable Surfaces

Full dispersion may be applied to any impervious surface such as a roof, driveway, parking area, or road, and to any non-native pervious surface such as a lawn, landscaped area, or pasture.

Operation and Maintenance

See Section C.2.1.9 (p. C-39).

C.2.1.1 MINIMUM DESIGN REQUIREMENTS FOR FULL DISPERSION

All of the following requirements must be met in order for full dispersion to be feasible and applicable to a target impervious surface or new pervious surface:

1. The total area of impervious surface being fully dispersed must be no more than 15% of the total area of native vegetated surface being preserved by a clearing limit per KCC 16.82 or by a recorded tract, easement, or covenant on the site. This area of native vegetated surface must be delineated on the site as specified in and subject to the restrictions in Section C.2.1.2. The total area of impervious surface plus non-native pervious surface being fully dispersed must be no more than 35% of the site. Note: for sites that span the divide between two or more stream basins, DDES may require that these percentages be applied by "threshold discharge area" as defined in the Surface Water Design Manual.

2. The runoff from a fully dispersed surface must be discharged using one of the following dispersion devices in accordance with the design specifications and maximum area of fully dispersed surface for each device as set forth in Sections C.2.1.3 through C.2.1.6:
 - Splash blocks (see Section C.2.1.3, p. C-28)
 - Rock pads (see Section C.2.1.4, p. C-28)
 - Gravel filled trenches (see Section C.2.1.5, p. C-29)
 - Sheet flow (see Section C.2.1.6, p. C-30)

3. A native vegetated flowpath segment of at least 100 feet in length (25 feet for sheet flow from a non-native pervious surface) must be available along the flowpath that runoff would follow upon discharge from a dispersion device listed in Minimum Requirement 2 above (note that the 100-foot minimum flowpath length may be reduced on projects located outside of the Urban Growth Area and where sheet flow is used with a native vegetated flowpath segment over outwash soils as specified in Section C.2.1.6). The native vegetated flowpath segment must meet all of the following criteria:
 a) The flowpath segment must be over native vegetated surface.

14 Non-native pervious surface means a pervious surface that does not meet the definition of a native vegetated surface and is not a natural water body or critical area.
b) The flowpath segment must be **onsite** or in an **offsite tract or easement area** reserved for such dispersion.

c) The **slope** of the flowpath segment must be no steeper than 15% for any 20-foot reach of the flowpath segment.

d) The flowpath segment must be located between the dispersion device and any **downstream drainage feature** such as a pipe, ditch, stream, river, pond, lake, or wetland.

e) The flowpath segments for adjacent dispersion devices must be sufficiently spaced in order to prevent overlap of flows in the segment areas. The **minimum spacing** between flowpath segments is specified for each dispersion device in subsequent sections, and includes an exception made in cases where sheet flow from a non-native pervious surface overlaps with other flowpath segments.

4. For **sites** with **septic systems**, the discharge of runoff from dispersion devices must be located down slope of the primary and reserve drainfield areas. DDES permit review staff can waive this requirement if site topography clearly prohibits discharged flows from intersecting the drainfield.

5. Dispersion devices are not allowed in critical area **buffers** (unless approved by DDES) or on **slopes** steeper than 20%. Dispersion devices proposed on slopes steeper than 15% or within 50 feet of a **steep slope hazard area** or **landslide hazard area** must be approved by a **geotechnical engineer** or **engineering geologist** unless otherwise approved by the DDES staff geologist.

6. The dispersion of runoff must not create **flooding or erosion impacts** as determined by the DDES. If runoff is discharged toward a **landslide hazard area**, **erosion hazard area**, **steep slope hazard area**, or any slope steeper than 15%, DDES may require evaluation and approval of the proposal by a **geotechnical engineer** or **engineering geologist**.

C.2.1.2 **DELINERATION OF NATIVE VEGETATED AREA FOR FULL DISPERSION**

The area of **native vegetated surface** used for full dispersion must be delineated as a "**native growth retention area**" on the flow control BMP site plan that will be attached to the required declaration of covenant and grant of easement per Requirement 3 of Section C.1.3.3. Delineation of the native growth retention area is subject to the following **restrictions**:

1. The principle restriction on native growth retention areas is **removal of vegetation and trees**. All trees within the native growth retention area at the time of permit application shall be retained, aside from approved timber harvest activities and the removal of dangerous and diseased trees.

2. The native growth retention area may include any **unsubmerged** critical areas and any critical area buffers.

3. The native growth retention area may include previously cleared areas replanted by the proposed project in accordance with the **native vegetated landscape** specifications in Section C.2.1.8 (p. C-37).

4. The native growth retention area **may be used for passive recreation** and related facilities, including pedestrian and bicycle trails, nature viewing areas, fishing and camping areas, and other similar activities that do not require permanent structures, provided that cleared areas and areas of compacted soil associated with these areas and facilities do not exceed eight percent of the native growth retention area.

5. The native growth retention area **may contain utilities and utility easements**, including other flow control BMPs, but not septic systems.

Note: the **Public Benefit Rating System (PBRS)** provides tax credit for properties that preserve 4 acres or more of contiguous open space in rural areas. Additional credits are granted under the forested open

15 Unsubmerged means outside the ordinary high water mark of streams, lakes, and wetlands.
space category, provided a Forest Management Plan is developed that maintains the open space in a fully forested condition.

C.2.1.3 USE OF SPLASH BLOCKS FOR FULL DISPERSION

Splash blocks such as that shown in Figure C.2.1.A (p. C-32) may be used to disperse the runoff collected from small amounts of roof area and discharged via a downspout.

Design Specifications

1. No more than 700 square feet of roof area may be drained to a single splash block unless the native vegetated flowpath segment is longer than the 100-foot minimum length specified in Minimum Requirement 3 of Section C.2.1.1.

2. A maximum roof area of 1,400 square feet may be discharged to a single splash block if the native vegetated flowpath segment is at least 200 feet in length. Note: for roof areas larger than 700 square feet, the splash block should be located away from building or other provisions should be made to prevent flooding/erosion problems.

3. For roof areas of between 700 square feet and 1,400 square feet, the length of the flowpath segment may vary proportionally between 100 and 200 feet.

4. For purposes of maintaining adequate separation of flows discharged from adjacent dispersion devices, the native vegetated flowpath segment for the splash block must have at least 50 feet of separation from an adjacent flowpath segment at the downstream end of whichever segment is the shorter. Exception: where sheet flow from a non-native pervious surface overlaps with the flowpath of a splash block, the splash block flowpath segment must be extended at least 1 foot for every 3 feet of non-native pervious surface width draining to the same flowpath. Note that width is measured in the general direction that runoff flows across the non-native pervious surface.

C.2.1.4 USE OF ROCK PADS FOR FULL DISPERSION

Pads of crushed rock, 2 feet wide (perpendicular to flow) by 3 feet long by 6 inches deep, may be used as a dispersion device to discharge small amounts of concentrated runoff from impervious surface or non-native pervious surface.

Design Specifications

1. No more than 700 square feet of impervious surface may be drained to a single rock pad unless the native vegetated flowpath segment is longer than the 100-foot minimum length specified in Minimum Requirement 3 of Section C.2.1.1 above. If the developed surface is non-native pervious surface other than pasture, no more than 2,500 square feet may be drained to a single rock pad with a 100-foot native vegetated flowpath segment. For pasture, the maximum is 8,000 square feet. Combinations of different surfaces draining to a single rock pad are allowed provided that the sum of each surface area divided by its maximum (e.g., impervious area divided by 700) is less than or equal to 1.0.

2. A maximum impervious surface area of 1,400 square feet may be drained to a single rock pad if the native vegetated flowpath segment is at least 200 feet in length. For non-native pervious surface other than pasture, the maximum area is 5,000 square feet. For pasture, the maximum is 16,000 square feet. Again, combinations of different surfaces are allowed as explained in Item 1 above.

3. For impervious surface areas of between 700 and 1,400 square feet, the length of the flowpath segment may vary proportionally between 100 and 200 feet. This variation is also allowed for non-native pervious surfaces (i.e., between 2,500 and 5,000 square feet for surfaces other than pasture, and between 8,000 and 16,000 square feet for pasture).

4. For purposes of maintaining adequate separation of flows discharged from adjacent dispersion devices, the native vegetated flowpath segment for the rock pad must have at least 50 feet of
separation from an adjacent flowpath segment at the downstream end of whichever segment is the shorter. **Exception:** where sheet flow from a non-native pervious surface overlaps with the flowpath of a rock pad, the rock pad flowpath segment must be extended at least 1 foot for every 3 feet of non-native pervious surface area width draining to the same flowpath. *Note that width is measured in the general direction that runoff flows across the non-native pervious surface.*

C.2.1.5 USE OF GRAVEL FILLED TRENCHES FOR FULL DISPERSION

Either of the two types of gravel filled trenches (also called "dispersion trenches") shown in Figure C.2.1.C (p. C-34) and Figure C.2.1.D (p. C-35) may be used as a dispersion device to spread the discharge of concentrated runoff from any type of developed surface.

General Design Specifications

1. All trenches are filled with \(\frac{3}{4} \)-inch to 1\(\frac{1}{2} \)-inch washed rock.
2. All trenches must be placed at least 10 feet from any building and must be as parallel as possible to the contour of the ground.
3. For purposes of maintaining adequate separation of flows discharged from adjacent dispersion devices, the outer edge of the native vegetated flowpath segment for the dispersion trench must have at least 50 feet of separation from an adjacent flowpath segment at the downstream end of whichever segment is the shorter. **Exception:** where sheet flow from a non-native pervious surface overlaps with the flowpath of a dispersion trench, the dispersion trench flowpath segment must be extended at least 1 foot for every 3 feet of non-native pervious surface area width draining to the same flowpath. *Note that width is measured in the general direction that runoff flows across the non-native pervious surface.*

Design Specifications for Simple 10-Foot Trench (Full Dispersion)

1. The simple 10-foot-long trench illustrated in Figure C.2.1.B (p. C-33) and Figure C.2.1.C (p. C-34) must be at least 2-feet-wide by 18-inches deep.
2. The 10-foot trench length is the maximum allowed without a notch grade board as shown in Figure C.2.1.D (p. C-35).
3. No more than 1,400 square feet of impervious area may be drained to a single 10-foot trench unless the native vegetated flowpath segment is longer than the 100-foot minimum length specified in Minimum Requirement 3 of Section C.2.1.1 above. If the developed surface is non-native pervious surface other than pasture, no more than 5,000 square feet may be drained to a single 10-foot trench with a 100-foot native vegetated flowpath segment. For pasture, the maximum is 16,000 square feet. Combinations of different surfaces draining to a single 10-foot trench are allowed provided that the sum of each surface area divided by its maximum (e.g., impervious area divided by 1,400) is less than or equal to 1.0.
4. A maximum impervious surface area of 2,800 square feet may be drained to a single 10-foot trench if the native vegetated flowpath segment is at least 200 feet in length. For non-native pervious surface other than pasture, the maximum area is 10,000 square feet. For pasture, the maximum is 32,000 square feet. Again, combinations of different surfaces are allowed as explained in Item 3 above.
5. For impervious surface areas of between 1,400 and 2,800 square feet, the length of the flowpath segment may vary proportionally between 100 and 200 feet. This variation is also allowed for non-native pervious surfaces (i.e., between 5,000 and 10,000 square feet for surfaces other than pasture, and between 16,000 and 32,000 square feet for pasture).

Design Specifications for 50-Foot Trench with Notch Board (Full Dispersion)

1. The 50-foot-long trench with notch grade board detailed in Figure C.2.1.D (p. C-35) must be at least 2-feet wide by 24-inches deep.
2. The 50-foot trench length is the longest allowed.

3. No more than 5,000 square feet of impervious area may be drained to a single 50-foot trench unless the native vegetated flowpath segment is longer than the 100-foot minimum length specified in Minimum Requirement 3 of Section C.2.1.1 above. If the developed surface is non-native pervious surface other than pasture, no more than 17,500 square feet may be drained to a single 50-foot trench with a 100-foot native vegetated flowpath segment. For pasture, the maximum is 1.25 acres (54,450 square feet). Combinations of different surfaces draining to a single 50-foot trench are allowed provided that the sum of each surface area divided by its maximum (e.g., impervious area divided by 5,000) is less than or equal to 1.0.

4. A maximum impervious surface area of 10,000 square feet may be drained to a single 50-foot trench if the native vegetated flowpath segment is at least 200 feet in length. For non-native pervious surface other than pasture, the maximum area is 35,000 square feet. For pasture, the maximum is 2.5 acres (108,900 square feet). Again, combinations of different surfaces are allowed as explained in Item 3 above.

5. For between 5,000 square feet and 10,000 square feet of impervious area, the length of the flowpath segment may vary proportionally between 100 and 200 feet for a 50-foot trench. The trench length may also vary proportionally between the 10-foot trench values above and the 50-foot values given here. For impervious surface areas of between 5,000 and 10,000 square feet, the length of the flowpath segment may vary proportionally between 100 and 200 feet. This variation is also allowed for non-native pervious surfaces (i.e., between 17,500 and 35,000 square feet for surfaces other than pasture, and between 1.25 and 2.5 acres for pasture).

6. Manifolds may be used to split flows between up to four 50-foot trenches.

C.2.1.6 USE OF SHEET FLOW FOR FULL DISPERSION

Sheet flow, as a dispersion device, is the grading of a developed surface (either a strip of impervious surface or a patch of non-native pervious surface) as needed to avoid the concentration of runoff before and after discharge from the surface. Two types of sheet flow, one for impervious surface and one for pervious surface, are detailed below.

Design Specifications for Impervious Surface Sheet Flow (Full Dispersion)

1. The strip of impervious surface may be either roof (with no gutter) or pavement. The edge of the impervious strip and the ground adjacent to or immediately below the edge must be level or sloped no more than 5% along the edge as shown in Figure C.2.1.E (p. C-36).

2. A 2-foot-wide, 4-to-6 inch-deep, strip of crushed rock or the extended base course of a road or driveway must be provided at or below the edge of the impervious strip to facilitate dispersal of runoff.

3. No more than a 25-foot-wide strip of impervious surface may be sheet flowed in this manner unless the native vegetated flowpath segment is longer than the 100-foot minimum length specified in Minimum Requirement 3 of Section C.2.1.1 above.

4. A maximum 50-foot-wide strip may be sheet flowed if the flowpath segment is at least 200 feet in length.

5. For strip widths of between 25 and 50 feet, the length of the flowpath segment may vary proportionally between 100 and 200 feet in length.

6. For projects located outside of the Urban Growth Area, the length of the flowpath segment may be reduced to 10 feet for each 20 feet of strip width up to maximum of strip width of 40 feet, provided the following criteria are met:
 a) The native vegetated flowpath segment is over outwash soils that have a measured infiltration rate of 4 inches per hour or greater for all the soil within a three foot depth, and
b) The depth to the maximum groundwater elevation is at least 3 feet.

7. For purposes of maintaining adequate separation of flows discharged from adjacent dispersion devices, the outer edge of the native vegetated flowpath segment for the strip of impervious surface must have at least 50 feet of separation from an adjacent flowpath segment at the downstream end of whichever segment is the shorter. **Exception:** where sheet flow from a non-native pervious surface overlaps with the flowpath for sheet flow from an impervious surface, the impervious surface flowpath segment must be extended at least 1 foot for every 3 feet of non-native pervious surface area width draining to the same flowpath. Note that width is measured in the general direction that runoff flows across the non-native pervious surface.

Design Specifications for Pervious Surface Sheet Flow (Full Dispersion)

1. The area of non-native pervious surface being dispersed by sheet flow must have a width\(^{16}\) of no more than 25 feet unless the native vegetated flowpath segment is longer than the 25-foot minimum length specified in Minimum Requirement 3 of Section C.2.1.1 above.

2. If the width of the non-native pervious surface is greater than 25 feet, the vegetated flowpath segment must be extended 1 foot for every 3 feet of width beyond 25 feet up to a maximum width of 250 feet.

3. The topography of the non-native pervious surface must be such that runoff will not concentrate prior to discharge from surface.

4. The vegetated flowpath segment for sheet flow from non-native pervious surface may overlap with the flowpath segments for other dispersion devices provided adjustments are made to the length of those segments as specified in the design specifications for each dispersion device.

C.2.1.7 FULL DISPERSION FIGURES AND SUMMARY INFORMATION

This section contains the figures referenced in the preceding sections for details on full dispersion devices and includes a useful summary table of the flowpath lengths and capacities of the dispersion devices.

| TABLE C.2.1.A SUMMARY OF DISPERSION DEVICE FLOWPATH LENGTHS & CAPACITIES |
|-----------------------------|----------------|------------------|------------------|
| **Full Dispersion Device** | **Native Vegetated Flowpath Length** | **Maximum Impervious Surface Amount** | **Maximum Non-Native Pervious Surface Amount** |
| | | | Non-Pasture | Pasture |
| Splash Block | 100 feet | 700 sq ft | NA | NA |
| | 200 feet | 1,400 sq ft | NA | NA |
| Rock Pad | 100 feet | 700 sq ft | 2,500 sq ft | 8,000 sq ft |
| | 200 feet | 1,400 sq ft | 5,000 sq ft | 16,000 sq ft |
| 10-foot Gravel Trench | 100 feet | 1,400 sq ft | 5,000 sq ft | 16,000 sq ft |
| | 200 feet | 2,800 sq ft | 10,000 sq ft | 32,000 sq ft |
| 50-foot Gravel Trench | 100 feet | 5,000 sq ft | 17,500 sq ft | 54,450 sq ft |
| | 200 feet | 10,000 sq ft | 35,000 sq ft | 108,900 sq ft |
| Sheet Flow from Impervious Surface | 100 feet* | 25-ft strip width | NA | NA |
| | 200 feet* | 50-ft strip width | NA | NA |
| Sheet Flow from Non-Native Pervious Surface | 25 feet | NA | 25 feet of width in direction of flow |
| | 50 feet | NA | 100 feet of width in direction of flow |
| | 75 feet | NA | 175 feet of width in direction of flow |
| | 100 feet | NA | 250 feet of width in direction of flow |

* Reducible to 10 feet for each 20 feet of strip width when dispersing over outwash soils outside the UGA.

\(^{16}\) Width is measured in the general direction that runoff flows across the area of non-native pervious surface. For irregular-shaped areas, the width may be an average of distances along multiple paths of runoff across the non-native pervious surface.
FIGURE C.2.1.A TYPICAL SPLASH BLOCK

[Diagram showing a typical splash block with labels for roof, downspout, splash block, and downspout extension.]
FIGURE C.2.1.B DRIVEWAY APPLICATION OF DISPERSION TRENCH AND ROCK PAD

Slot drain

10-foot long dispersion trench

≤1,400 sq ft for a 100-ft NVFS
≤2,800 sq ft for a 200-ft NVFS

Min 100-foot-long Native Vegetated Flowpath Segment

Edge of undisturbed native vegetation

10-foot long
Diagonal asphalt berm – 2 to 4 inches high

≤700 sq ft for a 100-ft NVFS
≤1,400 sq ft for a 200-ft NVFS

2-ft x 3-ft x 6-inch crushed rock pad

Min 100-foot-long Native Vegetated Flowpath Segment (NVFS)

50-foot separation between flowpath segments

PLAN VIEW OF DRIVEWAY

NTS
FIGURE C.2.1.C 10-FOOT DISPERSION TRENCH CROSS-SECTION AND ROOF APPLICATION

TRENCH X-SECTION

- Max 20% slope
- 6" min
- 18" min
- 24" min
- 4" perf pipe
- 1½" - 3/4" washed rock

PLAN VIEW OF ROOF

- ≤1,400 sq ft for a 100-ft NVFS
- ≤2,800 sq ft for a 200-ft NVFS
- ≤5,000 sq ft for a 100-ft NVFS
- ≤10,000 sq ft for a 200-ft NVFS

Native Vegetated Flowpath Segment (NVFS)

- Min. 100-ft-long NVFS
- ≤1,400 sq ft for a 100-ft NVFS
- ≤2,800 sq ft for a 200-ft NVFS
- ≤5,000 sq ft for a 100-ft NVFS
- ≤10,000 sq ft for a 200-ft NVFS

Type I CB

- 10-foot-long dispersion trench
- Level outlet

Min. 100-ft-long NVFS

- 50-foot separation b/t flowpath segments
- 100 feet minimum
- ≤15% Slope

native vegetation

Small catch basin or yard drain

50-foot-long dispersion trench with notch board

See Figure C.2.1.D

1/9/2009 2009 Surface Water Design Manual – Appendix C
FIGURE C.2.1.D 50-FOOT DISPERSION TRENCH WITH NOTCHED BOARD

PLAN

- pipe O.D.
- end cap or plug
- clean out wye from pipe
- 4” or 6” perforated pipe laid flat/level
- type I CB w/solid cover (locking)
- influent pipe (max design flow ≤ 0.5 CFS per trench)
- clean out wye from pipe

NOTES:

1. This trench shall be constructed so as to prevent point discharge and/or erosion.
2. Trenches may be placed no closer than 50 feet to one another. (100 feet along flowline)
3. Trench and grade board must be level. Align to follow contours of site.
4. Support post spacing as required by soil conditions to ensure grade board remains level.

SECTION A-A

- galvanized bolts
- 2” x 12” pressure treated grade board
- 4” x 4” support post
- clean (≤ 5% fines)
- 11½” - ¾” washed rock
- 4” or 6” perforated pipe laid flat
- filter fabric

- 1’-0” min
- 18” O.C.
- 2” grade board notches
- 2”
- 20% max
- 15/16” max
- 12” min
- 36” max
- 2”

15% max for flow control/water quality treatment in rural areas.
FIGURE C.2.1.E APPLICATION OF SHEET FLOW DISPERSION

- Crushed rock strip 2-ft wide
- Width ≤25 ft for a 100-ft NVFS
- Width ≤50 ft for a 200-ft NVFS
- Edge of undisturbed native vegetation
- ≤5% Slope
- Native Vegetated Flowpath Segment (NVFS)
- 100 feet minimum
- ≤15% Slope
C.2.1.8 NATIVE VEGETATED LANDSCAPE SPECIFICATIONS

Native vegetated landscape is basically the manmade version of a native vegetated surface. It may be used in situations where an applicant wishes to convert a previously developed surface to a native vegetated surface for purposes of meeting full dispersion requirements or code requirements for forest retention. Native vegetated landscape is intended to have the soil, vegetation, and runoff characteristics approaching that of natural forestland.

Conversion of a developed surface to native vegetated landscape requires the removal of impervious surface, de-compaction of soils, and the planting of native trees, shrubs, and ground cover in compost-amended soil according to all of the following specifications:

1. **Existing impervious surface** and any underlying base course (e.g., crushed rock, gravel, etc.) must be completely removed from the conversion area(s).

2. **Underlying soils** must be broken up to a depth of 18 inches. This can be accomplished by excavation or ripping with either a backhoe equipped with a bucket with teeth, or a ripper towed behind a tractor.

3. At least 4 inches of well-decomposed **compost** must be tilled into the broken up soil as deeply as possible. The finished surface should be gently undulating and must be only lightly compacted.

4. The area of native vegetated landscape must be **planted with native species** trees, shrubs, and ground cover from Table C.2.1.B (p. C-38). Species must be selected as appropriate for site shade and moisture conditions, and in accordance with the following requirements:
 a) **Trees**: a minimum of two species of trees must be planted, one of which is a conifer. Conifer and other tree species must cover the entire landscape area at the spacing given in Table 1.
 b) **Shrubs**: a minimum of two species of shrubs should be planted. Space plants to cover the entire landscape area, excluding points where trees are planted.
 c) **Groundcover**: a minimum of two species of ground cover should be planted. Space plants so as to cover the entire landscape area, excluding points where trees or shrubs are planted.

 Note: for landscape areas larger than 10,000 square feet, planting a greater variety of species than the minimum suggested above is strongly encouraged. For example, an acre could easily accommodate three tree species, three species of shrubs, and two or three species of groundcover.

5. At least 4 inches of **hog fuel** or other suitable mulch must be placed between plants as mulch for weed control. It is also possible to mulch the entire area before planting; however, an 18-inch diameter circle must be cleared for each plant when it is planted in the underlying amended soil. **Note**: plants and their root systems that come in contact with hog fuel or raw bark have a poor chance of survival.

6. Plantings must be **watered** consistently once per week during the dry season for the first two years.

7. The **plantings must be well established** on at least 90% of the converted area in order to be considered a native vegetated surface. A minimum of 90% plant survival is required after 3 years.

Conversion of an area that was under cultivation to native vegetated landscape requires a different treatment. Elimination of cultivated plants, grasses and weeds is required before planting and will be required on an on-going basis until native plants are well-established. The soil should be tilled to a depth of 18 inches. A minimum of 8 inches of soil having an organic content of 6 to 12 percent is required, or a four inch layer of compost may be placed on the surface before planting, or 4 inches of clean wood chips may be tilled into the soil, as recommended by a landscape architect or forester. After soil preparation is complete, continue with steps 4 through 7 above. Placing 4 inches of compost on the surface may be substituted for the hog fuel or mulch. For large areas where frequent watering is not practical, bare-root stock may be substituted at a variable spacing from 10 to 12 feet o.c. (with an average of 360 trees per acre) to allow for natural groupings and 4 to 6 feet o.c. for shrubs. Allowable bare-root stock types are 1-1, 2-1, P-1 and P-2. Live stakes at 4 feet o.c. may be substituted for willow and red-osier dogwood in wet areas.
TABLE C.2.1.B SELECTED NATIVE VEGETATION, SIZE, AND SPACING REQUIREMENTS

<table>
<thead>
<tr>
<th>Species</th>
<th>Type</th>
<th>Sun and Moisture Preferences</th>
<th>Planted Size</th>
<th>Spacing</th>
</tr>
</thead>
<tbody>
<tr>
<td>TREES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Douglas fir (Pseudotsuga menziesii)</td>
<td>conifer</td>
<td>Sun, dry to moist soil</td>
<td>5 gallon, 6'-7' B&B</td>
<td>12’ o.c.</td>
</tr>
<tr>
<td>Western red cedar (Thuja plicata)</td>
<td>conifer</td>
<td>Sun or shade, moist to wet soil</td>
<td>5 gallon, 6'-7' B&B</td>
<td>12’ o.c.</td>
</tr>
<tr>
<td>Western hemlock (Tsuga heterophylla)</td>
<td>conifer</td>
<td>Sun or shade, well-drained soil</td>
<td>5 gallon, 6'-7' B&B</td>
<td>12’ o.c.</td>
</tr>
<tr>
<td>Sitka spruce (Picea sitchensis)</td>
<td>conifer</td>
<td>Sun or shade, moist mineral soils to wet soils</td>
<td>5 gallon, 6'-7' B&B</td>
<td>12’ o.c.</td>
</tr>
<tr>
<td>Shore Pine (Pinus contorta var. contorta)</td>
<td>Conifer</td>
<td>Sun to partial shade, dry to wet</td>
<td>5 gallon, 6'-7' B&B</td>
<td>12’ o.c.</td>
</tr>
<tr>
<td>Western white pine (Pinus monticola)</td>
<td>Conifer</td>
<td>Sun to part shade, dry to moist</td>
<td>5 gallon, 6'-7' B&B</td>
<td>12’ o.c.</td>
</tr>
<tr>
<td>Grand fir (Abies grandis)</td>
<td>Conifer</td>
<td>Sun to shade, dry to moist</td>
<td>5 gallon, 6'-7' B&B</td>
<td>12’ o.c.</td>
</tr>
<tr>
<td>Red alder (Alnus rubra)</td>
<td>tree</td>
<td>Sun, a Nitrogen fixer,</td>
<td>5 gallon, 5'-6' B&B</td>
<td>12’ o.c.</td>
</tr>
<tr>
<td>Bigleaf maple (Acer macrophyllum)</td>
<td>tree</td>
<td>Sun or shade, dry to moist soil</td>
<td>5 gallon, 5'-6' B&B</td>
<td>12’ o.c.</td>
</tr>
<tr>
<td>Black cottonwood (Populus trichocarpa)</td>
<td>tree</td>
<td>Sun, wet soil</td>
<td>5 gallon, 5'-6' B&B</td>
<td>12’ o.c.</td>
</tr>
<tr>
<td>Cascara (Rhamnus purshiana)</td>
<td>tree/shrub</td>
<td>Sun to partial shade, dry to moist soil</td>
<td>5 gallon, 5'-6' B&B</td>
<td>8’ o.c.</td>
</tr>
<tr>
<td>Pacific willow (Salix lucida)</td>
<td>tree/shrub</td>
<td>Sun, damp soil</td>
<td>1 gallon, 2 gallon, 5 gallon</td>
<td>4’ o.c., 6’ o.c., 8’ o.c.</td>
</tr>
<tr>
<td>SHRUBS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sitka willow (Salix sitchensis)</td>
<td>shrub</td>
<td>Sun or shade, dry to damp soil</td>
<td>1 gallon, 2 gallon, 5 gallon</td>
<td>4’ o.c., 6’ o.c., 8’ o.c.</td>
</tr>
<tr>
<td>Vine maple (Acer circinatum)</td>
<td>shrub</td>
<td>Shade, moist to damp soils</td>
<td>1 gallon, 2 gallon, 5 gallon</td>
<td>4’ o.c., 6’ o.c., 8’ o.c.</td>
</tr>
<tr>
<td>Filbert (hazelnut) (Corylus cornuta)</td>
<td>shrub</td>
<td>Sun to shade, dry soil</td>
<td>1 gallon, 2 gallon, 5 gallon</td>
<td>4’ o.c., 6’ o.c., 8’ o.c.</td>
</tr>
<tr>
<td>Red-osier dogwood (Cornus sericea)</td>
<td>Shrub</td>
<td>Sun to shade, moist to wet soil</td>
<td>1 gallon, 2 gallon, 5 gallon</td>
<td>4’ o.c., 6’ o.c., 8’ o.c.</td>
</tr>
<tr>
<td>Salmonberry (Rubus spectabilis)</td>
<td>shrub</td>
<td>Sun to shade, moist to wet soil</td>
<td>1 gallon, 2 gallon, 5 gallon</td>
<td>4’ o.c., 6’ o.c., 8’ o.c.</td>
</tr>
<tr>
<td>Thimbleberry (Rubus parviflorus)</td>
<td>shrub</td>
<td>Sun to partial shade, dry to moist soil</td>
<td>1 gallon, 2 gallon, 5 gallon</td>
<td>4’ o.c., 6’ o.c., 8’ o.c.</td>
</tr>
<tr>
<td>Ocean spray (Holodiscus discolor)</td>
<td>shrub</td>
<td>Sun to partial shade, dry</td>
<td>1 gallon, 2 gallon, 5 gallon</td>
<td>4’ o.c., 6’ o.c., 8’ o.c.</td>
</tr>
<tr>
<td>Tall Oregon grape (Berberis aquifolium)</td>
<td>shrub</td>
<td>Sun to shade, dry to moist soil</td>
<td>1 gallon</td>
<td>4’ o.c.</td>
</tr>
<tr>
<td>Snowberry (Symphoricarpos albus)</td>
<td>shrub</td>
<td>Sun to shade, dry to wet soil</td>
<td>1 gallon, 30-36"</td>
<td>4’ o.c.</td>
</tr>
<tr>
<td>Service berry (Amelanchier alnifolia)</td>
<td>shrub</td>
<td>Sun to shade, dry to wet soil</td>
<td>1 gallon</td>
<td>6’ o.c.</td>
</tr>
<tr>
<td>Indian plum (Oemleria cerasiformis)</td>
<td>shrub</td>
<td>Sun to shade, moist soil</td>
<td>1 gallon</td>
<td>4’ o.c.</td>
</tr>
<tr>
<td>Twinberry (Lonicera involucrata)</td>
<td>shrub</td>
<td>Sun to partial shade, moist soil</td>
<td>1 gallon</td>
<td>4’ o.c.</td>
</tr>
<tr>
<td>GROUND COVER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evergreen huckleberry (Vaccinium)</td>
<td>groundcover</td>
<td>Sun to partial shade, moist soil</td>
<td>1 gallon</td>
<td>2’ o.c.</td>
</tr>
</tbody>
</table>
TABLE C.2.1.B SELECTED NATIVE VEGETATION, SIZE, AND SPACING REQUIREMENTS

<table>
<thead>
<tr>
<th>Species Type</th>
<th>Type</th>
<th>Sun and Moisture Preferences</th>
<th>Planted Size</th>
<th>Spacing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kinnikinick (Arctostaphylos uva-ursa)</td>
<td>groundcover</td>
<td>Sun to partial shade, dry soil</td>
<td>1 gallon</td>
<td>2’ o.c.</td>
</tr>
<tr>
<td>Salal (Gaultheria shallon)</td>
<td>groundcover</td>
<td>Sun to shade, dry to moist soil</td>
<td>1 gallon</td>
<td>18” o.c.</td>
</tr>
<tr>
<td>Low Oregon grape (Mahonia repens)</td>
<td>groundcover</td>
<td>Sun to partial shade, dry to moist soil</td>
<td>9-12”</td>
<td>18” o.c.</td>
</tr>
<tr>
<td>Sword fern (Polystichum munitum)</td>
<td>groundcover</td>
<td>Sun to deep shade, dry to moist soil</td>
<td>2 gallon</td>
<td>3’ o.c.</td>
</tr>
</tbody>
</table>

C.2.1.9 MAINTENANCE INSTRUCTIONS FOR FULL DISPERSION

If the full dispersion flow control BMP is proposed for a project, the following maintenance and operation instructions must be recorded as an attachment to the required declaration of covenant and grant of easement per Requirement 3 of Section C.1.3.3 (p. C-18). The intent of these instructions is to explain to future property owners, the purpose of the BMP and how it must be maintained and operated. These instructions are intended to be a minimum; DDES may require additional instructions based on site-specific conditions. Also, as the County gains more experience with the maintenance and operation of these BMPs, future updates to the instructions will be posted on King County's Surface Water Design Manual website.

TEXT OF INSTRUCTIONS

Your property contains a stormwater management flow control BMP (best management practice) called "full dispersion." Full dispersion is a strategy for minimizing the area disturbed by development (i.e., impervious or non-native pervious surfaces, such as concrete areas, roofs, and lawns) relative to native vegetated areas (e.g., forested surface) together with the application of dispersion techniques that utilize the natural capacity of the native vegetated areas to mitigate the stormwater runoff quantity and quality impacts of the developed surfaces. This flow control BMP has two primary components that must be maintained: (1) the devices that disperse runoff from the developed surfaces and (2) the native vegetated area.

Dispersion Devices

The dispersion devices used on your property include the following as indicated on the flow control BMP site plan: splash blocks, rock pads, gravel filled trenches, sheet flow. The size, placement, composition, and downstream flowpaths of these devices as depicted by the flow control BMP site plan and design details must be maintained and may not be changed without written approval either from the King County Water and Land Resources Division or through a future development permit from King County.

Dispersion devices must be inspected annually and after major storm events to identify and repair any physical defects. When native soil is exposed or erosion channels are present, the sources of the erosion or concentrated flow need to be identified and mitigated. Bare spots should be re-vegetated with native vegetation. Concentrated flow can be mitigated by leveling the edge of the pervious area and/or regrading or replenishing the rock in the dispersion device, such as in rock pads and gravel-filled trenches.

Native Growth Retention Area

The native vegetated surface required for full dispersion is delineated as a "native growth retention area" on the flow control BMP site plan. The trees, vegetation, ground cover, and soil conditions in this area may not be disturbed, except as allowed by the following provisions for that portion of the native growth retention area outside of critical areas and critical area buffers:

1. Trees may be harvested in accordance with a King County-approved forest management plan.
2. Individual trees that have a structural defect due to disease or other defects, and which threaten to damage a structure, road, parking area, utility, or place of employment or public assembly, or block emergency access, may be topped, pruned, or removed as needed to eliminate the threat.
3. Dead or fallen trees, tree limbs within ten feet of the ground, and branches overhanging a residence may be removed to reduce the danger of wildfire.

4. Noxious weeds (i.e., plant species listed on the State noxious weed list in Chapter 16-750 WAC) and invasive vegetation (i.e., plant species listed as obnoxious weeds on the noxious weed list adopted by the King County Department of Natural Resources and Parks) may be removed.

5. Passive recreation uses and related facilities, including pedestrian, equestrian community and bicycle trails, nature viewing areas, fishing and camping areas, and other similar uses that do not require permanent structures, are allowed if clearing and soil compaction associated with these uses and facilities does not exceed eight percent of the native growth retention area.
C.2.2 FULL INFILTRATION

This section presents the minimum requirements and design specifications for "full infiltration" of runoff from impervious surfaces. Full infiltration means the use of BMPs that can "fully and reliably" infiltrate (i.e., soak) runoff into the ground. "Fully" in this context means all the runoff from nearly all storm events is soaked into the ground. "Reliably" means that the soil conditions are favorable enough to assure that the device used to soak water into the ground (e.g., gravel filled trench, drywell, etc.) will perform as expected for a reasonable number of years before having to be replaced.

Applicable Surfaces

Full infiltration may be applied to any impervious surface (e.g., roof, driveway, parking area, or road) subject to the minimum design requirements and specifications in this section.

Operation and Maintenance

See Section C.2.2.6 (p. C-44).

C.2.2.1 REQUIRED SOILS REPORT

Many locations in King County have soils that are underlain by a compacted layer of soil (i.e., glacial till or hardpan) which severely limits soaking capacity and causes water to perch on the relatively impervious layer during the wet season. This can make full infiltration of runoff impracticable, cost prohibitive, unreliable, or all three. Thus, a soils report is necessary to identify soil types and depth to impermeable layers (hardpan) or the maximum wet season groundwater level.

For the purposes of determining if full infiltration of roof runoff is mandatory as outlined in Section C.1.3, the report is a requirement for any site/lot where full dispersion of runoff from target impervious surface is not feasible or applicable as specified in the individual lot BMP requirements in Sections C.1.3.1 and C.1.3.2. The report is also required for any optional use of full infiltration.

Soils reports for individual lots must include at least one soils log for each proposed infiltration location. Each log shall be a minimum of 4 feet deep (6 feet for drywells). The report shall describe the SCS series of the soil and the textural class of each horizon through the depth of the log, and it shall include notes of any evidence of a high groundwater table, such as mottling. Soils reports must be prepared by or under the direction of a licensed onsite sewage system designer, civil engineer, engineering geologist, or geotechnical engineer.

A soils report produced for siting and design of an onsite sewage system may also be used to satisfy this soils report requirement, provided that (a) the depth of the soil log(s) is at least 4 feet, (b) the depth to seasonal high water table is determined, and (c) the location of the soil logs is adequate to determine the feasibility of the infiltration system.

Note: soils reports for a single infiltration system serving more than one lot must be prepared in accordance with the standards contained in Section 5.4 of the SWDM.

C.2.2.2 MINIMUM DESIGN REQUIREMENTS FOR FULL INFILTRATION

All of the following requirements must be met in order for full infiltration to be feasible and applicable to a target impervious surface:

1. As determined from the soils report required in Section C.2.2.1, all of the following soil conditions must be met in vicinity of where the infiltration system would be located:

 a) Existing soils must be coarse sands or cobbles or medium sands and cannot be comprised of fill materials where the infiltration device will be located. Note: full infiltration may be possible in
other types of soils or fill materials if designed by a civil engineer in accordance with the infiltration facility standards in Section 5.4 of the SWDM.

b) For purposes of determining whether full infiltration of roof runoff is mandatory as outlined in Section C.1.3, the depth of soil to the maximum wet season water table or hardpan must be at least 3 feet. For any optional or mandatory application of full infiltration, the depth of soil to the maximum wet season water table or hardpan must be at least 1 foot below the bottom of a gravel filled infiltration system and at least 3 feet below the bottom of ground surface depression used for full infiltration.

2. For purposes of determining whether full infiltration of roof runoff is mandatory as outlined in Section C.1.3, one of the following infiltration devices must be used in accordance with the design specifications for each device set forth in Sections C.2.2.3, C.2.2.4, and C.2.2.5. Note: full infiltration may be possible using other types and sizes of infiltration devices if designed by a civil engineer in accordance with the infiltration facility standards in Section 5.4 of the SWDM.

 • Gravel filled trenches (see Section C.2.2.3, p. C-42)
 • Drywells (see Section C.2.2.4, p. C-43)
 • Ground surface depressions (see Section C.2.2.5, p.C-43)

3. A minimum 5-foot setback shall be maintained between any part of an infiltration device and any structure or property line. Larger setbacks from structures may be specified in the design specifications for each infiltration device. Infiltration devices may not be placed in sensitive area buffers. A 50-foot setback is required between an infiltration device and a steep slope hazard area or landslide hazard area (this may be reduced if approved by a geotechnical engineer or engineering geologist and DDES).

4. Infiltration devices are not allowed in critical area buffers or on slopes steeper than 25% (4 horizontal to 1 vertical). Infiltration devices proposed on slopes steeper than 15% or within 50 feet of a landslide hazard area or steep slope hazard area must be approved by a geotechnical engineer or engineering geologist unless otherwise approved by the DDES staff geologist.

5. For sites with septic systems, infiltration devices must be located downgradient of the primary and reserve drainfield areas. DDES permit review staff can waive this requirement if site topography clearly prohibits subsurface flows from intersecting the drainfield.

6. The infiltration of runoff must not create flooding or erosion impacts as determined by DDES. If runoff is infiltrated near a landslide hazard area, erosion hazard area, steep slope hazard area, or a slope steeper than 15%, DDES may require evaluation and approval of the proposal by a geotechnical engineer or engineering geologist.

C.2.2.3 USE OF GRAVEL FILLED TRENCHES FOR FULL INFILTRATION

Gravel filled trenches (also called "infiltration trenches") are a good option where the depth to the maximum wet-season water table or hardpan is between 3 and 6 feet. Figure C.2.2.A (p. C-45) and Figure C.2.2.B (p. C-46) illustrate the specifications for gravel filled trench systems as outlined below:

1. When located in coarse sands or cobbles, infiltration trenches must be at least 20 feet in length per 1,000 square feet of impervious surface served. When located in medium sands, infiltration trenches must be at least 30 feet in length per 1,000 square feet of impervious surface served.

2. Maximum trench length must not exceed 100 feet from the inlet sump.

3. The trench width must be a minimum of 2 feet.

4. The trench must be filled with at least 18 inches of 3/4-inch to 1 1/2-inch washed drain rock. The drain rock may be covered with backfill material as shown in Figure C.2.2.A or remain exposed at least 6 inches below the lowest surrounding ground surface as shown in Figure C.2.2.B.
5. **Filter fabric** (geotextile) must be placed on top of the drain rock (if proposed to be covered with backfill material) and on the trench sides prior to filling with the drain rock.

6. **Spacing** between trench centerlines must be at least 6 feet.

7. Infiltration trenches must be **setback** at least 15 feet from buildings with crawl space or basement elevations that are below the overflow point of the infiltration system.

8. To prevent damage to overlying pavement, **trenches located beneath pavement** shall be constructed such that the trench pipe is connected to a small yard drain or catch basin with a grate cover so that if the trench infiltration capacity is exceeded, the overflow would occur out of the catch basin at an elevation at least one foot below that of any overlying pavement, and in a location that provides a safe path for the overflow.

9. Runoff from roadways, driveways, and parking areas shall pass through a yard drain or catch basin fitted with a **down-turned elbow** prior to entering the infiltration trench (see Figure C.2.2.B, p. C-46). The elbow is intended to trap spilled material in the catch basin sump so that the spilled material can be cleaned up more easily by the homeowner.

C.2.2.4 USE OF DRYWELLS FOR FULL INFILTRATION

Drywells are gravel filled holes as opposed to trenches and therefore may allow for a more compact design in areas where the depth to the maximum wet-season water table is relatively deep (e.g., 6 feet or greater). Figure C.2.2.C on page C-47 illustrates the specifications for drywell infiltration systems as outlined below:

1. When located in coarse sands and cobbles, drywells must contain a **volume of gravel** equal to or greater than 60 cubic feet per 1,000 square feet of impervious surface served. When located in medium sands, drywells must contain at least 90 cubic feet of gravel per 1,000 square feet of impervious surface served.

2. Drywells must be at least 48 inches in **diameter** and deep enough to contain the gravel amounts specified above for the soil type and impervious surface area served.

3. The gravel used for drywells must be 1 1/2-inch to 3-inch **washed drain rock**. The drain rock may be covered with backfill material as shown in Figure C.2.2.C (p. C-47) or remain exposed at least 6 inches below the lowest surrounding ground surface.

4. **Filter fabric** (geotextile) must be placed on top of the drain rock (if proposed to be covered with backfill material) and on the drywell sides prior to filling with the drain rock.

5. **Spacing** between drywells shall be a minimum of 10 feet.

6. Drywells must be **setback** at least 15 feet from buildings with crawl space or basement elevations that are below the overflow point of the drywell.

C.2.2.5 USE OF GROUND SURFACE DEPRESSIONS FOR FULL INFILTRATION

Ground surface depressions (also called "infiltration depressions") are another option for full infiltration if the maximum wet-season water table or hardpan is at least 3 feet below the bottom of the depression. Figure C.2.2.D illustrates the specifications for infiltration depressions as outlined below:

1. When located in coarse sands or cobbles, infiltration depressions must be able to store at least 40 cubic feet of stormwater per 1,000 square feet of impervious surface served. When located in medium sands, ground surface depressions must be able to store at least 60 cubic feet of stormwater per 1,000 square feet of impervious surface served. This **volume of water storage** must be achieved through the excavation of existing native soil, not through the construction of berms.

2. The stormwater storage areas of infiltration depressions must be at least 12 inches in **depth** with a minimum 6 inches of freeboard before overflow.
3. The depression overflow point must be at least 6 inches below any adjacent pavement area and must be situated so that overflow does not cause erosion damage or unplanned inundation.

4. The depression side slopes must be no steeper than 3 horizontal to 1 vertical.

5. Spacing between multiple infiltration depressions shall be a minimum of 4 feet.

6. Infiltration depressions must be setback at least 15 feet from buildings with crawl space or basement elevations that are below the overflow point of the infiltration depression.

7. Infiltration depressions may be any size or shape provided the above specifications and the minimum requirements in Section C.2.2.1 are met.

8. The ground surface of the infiltration depression must be vegetated with grass or other dense ground cover.

C.2.2.6 MAINTENANCE INSTRUCTIONS FOR FULL INFILTRATION

If the full infiltration flow control BMP is proposed for a project, the following maintenance and operation instructions must be recorded as an attachment to the required declaration of covenant and grant of easement per Requirement 3 of Section C.1.3.3 (p. C-18). The intent of these instructions is to explain to future property owners, the purpose of the BMP and how it must be maintained and operated. These instructions are intended to be a minimum; DDES may require additional instructions based on site-specific conditions. Also, as the County gains more experience with the maintenance and operation of these BMPs, future updates to the instructions will be posted on King County's Surface Water Design Manual website.

☐ TEXT OF INSTRUCTIONS

Your property contains a stormwater management flow control BMP (best management practice) called "full infiltration," which was installed to mitigate the stormwater quantity and quality impacts of some or all of the impervious surfaces on your property. Full infiltration is a method of soaking runoff from impervious area (such as paved areas and roofs) into the ground. If properly installed and maintained, full infiltration can manage runoff so that a majority of precipitation events are absorbed. Infiltration devices, such as gravel filled trenches, drywells, and ground surface depressions, facilitate this process by putting runoff in direct contact with the soil and holding the runoff long enough to soak most of it into the ground. To be successful, the soil condition around the infiltration device must be reliably able to soak water into the ground for a reasonable number of years.

The infiltration devices used on your property include the following as indicated on the flow control BMP site plan: ☐ gravel filled trenches, ☐ drywells, ☐ ground surface depressions. The size, placement, and composition of these devices as depicted by the flow control BMP site plan and design details must be maintained and may not be changed without written approval either from the King County Water and Land Resources Division or through a future development permit from King County.

Infiltration devices must be inspected annually and after major storm events to identify and repair any physical defects. Maintenance and operation of the system should focus on ensuring the system's viability by preventing sediment-laden flows from entering the device. Excessive sedimentation will result in a plugged or non-functioning facility. If the infiltration device has a catch basin, sediment accumulation must be removed on a yearly basis or more frequently if necessary. Prolonged ponding around or atop a device may indicate a plugged facility. If the device becomes plugged, it must be replaced. Keeping the areas that drain to infiltration devices well swept and clean will enhance the longevity of these devices. For roofs, frequent cleaning of gutters will reduce sediment loads to these devices.
FIGURE C.2.2.B ALTERNATIVE TRENCH INFILTRATION SYSTEM

NOTE: Same length dimensions and site limitations as typical system

X-SECTION

NTS

NOTE: Same length dimensions and site limitations as typical system

11 1/2" - 3/4" washed rock

Overflow

Grass

6" min

18" min

2' min

15' min

Driveway

Filter strip

5' min

Overflow

Grass

6" min

18" min

2' min
FIGURE C.2.2.C TYPICAL DRYWELL INFILTRATION SYSTEM

- House
- Roof Downspout
- Catch Basin (Yard Drain)
- Roof Downspout
- Fine Mesh Screen
- Topsoil
- Sides of Hole Lined with Filter Fabric
- Min. 4" dia. PVC Pipe
- Mark Center of Hole with 1" Capped PVC or Other means Flush with Surface
- Min. 1' above Seasonal High Groundwater Table
- 48 Inch Diameter Hole Filled with 1½-3" Washed Drain Rock

- DRY WELL PLAN VIEW
- DRY WELL SECTION

NTS

15' min.

Varies

1' min.
FIGURE C.2.2.D TYPICAL GROUND SURFACE DEPRESSION INFILTRATION SYSTEM
C.2.3 LIMITED INFILTRATION

Limited infiltration is the use of infiltration devices from Section C.2.2 in soils that are not as permeable as the medium sands or coarse sands/cobbles targeted for full infiltration in Section C.2.2. These less desirable soils include fine sands, loamy sands, sandy loams, and loams, which tend to be more variable in permeability, more frequently saturated during the wet season, and more prone to plugging over time. While full infiltration may be possible under the best of these soil conditions, in the long run, these conditions will conspire to limit average infiltration capacity to something much less than that of full infiltration. Therefore, using limited infiltration as specified in this section will not be credited the same as using full infiltration as specified in Section C.2.2.

Applicable Surfaces

Limited infiltration may be applied to any impervious surface (e.g., roof, driveway, parking area, or road) subject to the minimum requirements and design specifications in this section.

Operation and Maintenance

See Section C.2.3.5 (p. C-50).

C.2.3.1 REQUIRED SOILS REPORT

In order to properly design limited infiltration devices, a soils report is required to identify the depth to impermeable layers (i.e., hardpan) and to the maximum wet season groundwater level. See Section C.2.2.1 (p. C-41) for more details on this report. In many cases, this report will have already been prepared as required in Sections C.1.3.1 and C.1.3.2 for lots where full dispersion is not feasible or applicable to target impervious surface per Section C.2.1.

C.2.3.2 MINIMUM DESIGN REQUIREMENTS FOR LIMITED INFILTRATION

The minimum requirements for limited infiltration are the same as those for full infiltration, except infiltration depressions are excluded and existing soils in the location of the infiltration device may be fine sands, loamy sands, sandy loams, or loams as opposed to only medium sands or better. *Note that gravel and medium sand soils used for full infiltration correspond to Soil Types 1A, 1B, 2A and 2B in the Soil Textural Classification system used for onsite septic system design; fine sands are Type 3; and loamy sands, sandy loams and loams are Type 4 soils. Silt and clay loams, and cemented till (hardpan) are not suitable for limited infiltration systems.*

C.2.3.3 USE OF GRAVEL FILLED TRENCHES FOR LIMITED INFILTRATION

The specifications for use of gravel filled trenches for limited infiltration are the same as those used for full infiltration, except that every 1,000 square feet of tributary impervious surface requires different **trench lengths** as follows: (a) 75 feet if the soil is a fine sand/loamy sand, (b) 125 feet if the soil is a sandy loam, or (c) 190 feet if the soil is a loam.

C.2.3.4 USE OF DRYWELLS FOR LIMITED INFILTRATION

The specifications for use of drywells for limited infiltration are the same as those used for full infiltration, except that every 1,000 square feet of tributary impervious surface requires different **gravel volumes** as follows: (a) 230 cubic feet if the soil is a fine sand/loamy sand, (b) 380 cubic feet if the soil is a sandy loam, or (c) 570 cubic feet if the soil is a loam.
C.2.3.5 MAINTENANCE INSTRUCTIONS FOR LIMITED INFILTRATION

If the limited infiltration flow control BMP is proposed for a project, the following maintenance and operation instructions must be recorded as an attachment to the required declaration of covenant and grant of easement per Requirement 3 of Section C.1.3.3 (p. C-18). The intent of these instructions is to explain to future property owners, the purpose of the BMP and how it must be maintained and operated. These instructions are intended to be a minimum; DDES may require additional instructions based on site-specific conditions. Also, as the County gains more experience with the maintenance and operation of these BMPs, future updates to the instructions will be posted on King County's Surface Water Design Manual website.

TEXT OF INSTRUCTIONS

Your property contains a stormwater management flow control BMP (best management practice) called "limited infiltration," which was installed to mitigate the stormwater quantity and quality impacts of some or all of the impervious surfaces on your property. Limited infiltration is a method of soaking runoff from impervious area (such as paved areas and roofs) into the ground. Infiltration devices, such as gravel filled trenches, drywells, and ground surface depressions, facilitate this process by putting runoff in direct contact with the soil and holding the runoff long enough to soak most of it into the ground. To be successful, the soil condition around the infiltration device must be able to soak water into the ground for a reasonable number of years.

The infiltration devices used on your property include the following as indicated on the flow control BMP site plan: gravel filled trenches, drywells. The size, placement, and composition of these devices as depicted by the flow control BMP site plan and design details must be maintained and may not be changed without written approval either from the King County Water and Land Resources Division or through a future development permit from King County.

Infiltration devices must be inspected annually and after major storm events to identify and repair any physical defects. Maintenance and operation of the system should focus on ensuring the system's viability by preventing sediment-laden flows from entering the device. Excessive sedimentation will result in a plugged or non-functioning facility. If the infiltration device has a catch basin, sediment accumulation must be removed on a yearly basis or more frequently if necessary. Prolonged ponding around or atop a device may indicate a plugged facility. If the device becomes plugged, it must be replaced. Keeping the areas that drain to infiltration devices well swept and clean will enhance the longevity of these devices. For roofs, frequent cleaning of gutters will reduce sediment loads to these devices.
C.2.4 BASIC DISPERSION

Basic dispersion is the application of dispersion devices that utilize any available capacity of onsite vegetated areas to mitigate the runoff quantity and quality impacts from developed surfaces (i.e., impervious and non-native pervious surfaces). The requirements for basic dispersion are less restrictive than full dispersion (Section C.2.1) in that any type of vegetation cover is allowed, the flowpath lengths through the vegetation are shorter, and there is no requirement to preserve native vegetated surface (e.g., forested surface) or minimize developed surface. As such, its mitigation of runoff impacts is significantly lower than that of full dispersion.

Applicable Surfaces
Subject to the minimum design requirements and specifications in this section, basic dispersion may be applied to any impervious surface such as a roof, driveway, parking area, road, or sidewalk. Basic dispersion may also be used to disperse runoff from non-native pervious surface (e.g., lawns, landscaped areas, or pastures) if runoff from these surfaces is concentrated.

Operation and Maintenance
See Section C.2.4.6 (p. C-54).

C.2.4.1 MINIMUM DESIGN REQUIREMENTS FOR BASIC DISPERSION

All of the following requirements must be met in order for basic dispersion to be applicable to a target impervious or pervious surface:

1. Runoff from the target impervious or pervious surface must be discharged using one of the following dispersion devices in accordance with the design specifications and maximum area of developed surface for each device as set forth in Sections C.2.4.2 through C.2.4.5:
 - Splash blocks (see Section C.2.4.2, p. C-52)
 - Rock pads (see Section C.2.4.3, p. C-52)
 - Gravel filled trenches (see Section C.2.4.4, p. C-53)
 - Sheet flow (see Section C.2.4.5, p. C-54)

2. Each device must discharge runoff such that it flows over a minimum distance of vegetated area called the "vegetated flowpath segment." The minimum distance, or length of the flowpath segment, is specified in the design specifications for each device. The "vegetated flowpath segment" itself must meet all of the following criteria:
 a) The flowpath segment must be over well-established lawn or pasture, landscaping with well-established groundcover, or native vegetation with natural groundcover. The groundcover must be dense enough to help disperse and infiltrate flows and to prevent erosion.
 b) The flowpath segment must be onsite or in an offsite tract or easement area reserved for such dispersion.
 c) The slope of the flowpath segment must be no steeper than 15% for any 20-foot reach of the flowpath segment.
 d) The flowpath segment must be located between the dispersion device and any downstream impervious surface or drainage feature such as a pipe, ditch, stream, river, pond, lake, or wetland. All or a portion of the flowpath segment may be located within a critical area buffer.

3. Dispersion devices are not allowed in critical area buffers or on slopes steeper than 20%. Dispersion devices proposed on slopes steeper than 15% or within 50 feet of a steep slope hazard area or
landslide hazard area must be approved by a geotechnical engineer or engineering geologist unless otherwise approved by the DDES staff geologist.

4. For sites with septic systems, the discharge of runoff from dispersion devices must be located down slope of the primary and reserve drainfield areas. DDES permit review staff may waive this requirement if site topography clearly prohibits discharged flows from intersecting the drainfield.

5. The dispersion of runoff must not create flooding or erosion impacts as determined by the DDES. If runoff is discharged toward a landslide hazard area, erosion hazard area, steep slope hazard area, or a slope steeper than 15%, DDES may require evaluation and approval of the proposal by a geotechnical engineer or engineering geologist.

C.2.4.2 USE OF SPLASH BLOCKS FOR BASIC DISPERSION

Splash blocks are the simplest way to disperse flows from a roof area. Downspout splash blocks or downspout/drain extensions with splash blocks are often the only hardware required for this type of system. Vegetated flowpaths do the work of slowing and cleaning stormwater runoff. In general, if the ground is sloped away from the foundation, and there is adequate vegetation and area for effective dispersion, splash blocks will adequately disperse storm runoff. If the ground is fairly level, or if the structure includes a basement, or if foundation drains are proposed, splash blocks with downspout extensions may be a better choice because the discharge point is moved away from the foundation. Downspout extensions may include piping to a splash block that is a considerable distance from the roof downspout, provided the runoff can travel through a well-vegetated area as described below.

Uses: Roofs where runoff is collected and discharged via downspouts.

Design Specifications

Figure C.2.4.A (p. C-55) shows details of a roof downspout and splash block. The following specifications apply to use of splash blocks for basic dispersion:

1. No more than 700 square feet of roof area may be drained to a single splash block.
2. A "vegetated flowpath segment" of at least 50 feet in length must be available along the flowpath that runoff would follow upon discharge from the splash block.
3. For purposes of maintaining adequate separation of flows discharged from adjacent dispersion devices, the vegetated flowpath segment for the splash block must not overlap with other flowpath segments, except those associated with sheet flow from a non-native pervious surface.

C.2.4.3 USE OF ROCK PADS FOR BASIC DISPERSION

Pads of crushed rock, 2 feet wide (perpendicular to flow) by 3 feet long by 6 inches deep, may be used as a dispersion device to discharge concentrated runoff from small amounts of impervious surface or non-native pervious surface.

Uses: Roofs, driveways, lawns, pasture, etc. from which runoff is concentrated in a downspout, gutter, pipe, yard drain, ditch, swale, etc.

Design Specifications

Figure C.2.4.C (p. C-57) shows two possible ways of spreading flows from steep driveways. The following specifications apply to use of rock pads for basic dispersion:

1. No more than 700 square feet of impervious surface (or 5,000 square feet of non-native pervious surface) may be drained to a single rock pad.
2. A "vegetated flowpath segment" of at least 50 feet in length as illustrated in Figure C.2.4.C (p. C-57) must be available along the flowpath that runoff would follow upon discharge from the rock pad.
3. The pad of crushed rock shall be 2 feet wide by 3 feet long by 6 inches deep.

4. For purposes of maintaining adequate separation of flows discharged from adjacent dispersion devices, the vegetated flowpath segment for the rock pad must not overlap with other flowpath segments, except those associated with sheet flow from a non-native pervious surface.

C.2.4.4 USE OF GRAVEL FILLED TRENCHES FOR BASIC DISPERSION

Where dispersion of concentrated flows through 50 feet of vegetation is not feasible, such as on a small or highly constrained site, a gravel filled trench (also called a dispersion trench) may be used to "unconcentrate" flows. Dispersion trenches provide some storage for runoff, promote infiltration, and spread concentrated flows so that a shorter vegetated flowpath length can be used at the trench outlet. This BMP is more expensive than the simple dispersion systems described above, and must be carefully constructed to be effective.

Uses: Roofs, driveways, lawns, pasture, etc. from which runoff is concentrated in a downspout, yard drain, pipe, drainage tile, etc.

Design Specifications

Figure C.2.4.B (p. C-56) shows two types of dispersion trenches that may be used, a "simple 10-foot trench" and a maximum "50-foot trench with notch board." The 50-foot trench with notch board is further detailed in Figure C.2.1.D (p. C-35). These gravel filled trenches must meet the following specifications for basic dispersion:

1. No more than 700 square feet of impervious surface (or 5,000 square feet of non-native pervious surface) may be drained to a simple 10-foot dispersion trench. Up to 3,500 square feet of impervious surface (or 25,000 square feet of non-native pervious surface) may be drained to a 50-foot trench with notch board. Smaller lengths of trench with notch board may be used at a ratio of 10 feet of trench per 700 square feet of impervious surface (or 5,000 square feet of non-native pervious surface).

2. A "vegetated flowpath segment" of at least 25 feet in length must be available along the flowpath that runoff would follow upon discharge from a dispersion trench. This length must be increased to 50 feet if the discharge is toward a steep slope hazard area or a landslide hazard area steeper than 15%. All or a portion of the vegetated flowpath segment may be within the buffer for the steep slope hazard area or landslide hazard area.

3. The simple 10-foot trench illustrated in Figure C.2.4.B must be at least 2-feet wide by 18-inches deep. The maximum 50-foot trench with notch board detailed in Figure C.2.1.D must be at least 2-feet wide by 24-inches deep.

4. All trenches must be filled with 3/4 to 1 1/2-inch washed rock.

5. All trenches must be placed at least 10 feet from any building and must be parallel as possible to the contour of the ground. A setback of at least 5 feet must be maintained between any edge of a trench and the property line.

6. For purposes of maintaining adequate separation of flows discharged from adjacent dispersion devices, the outer edge of the vegetated flowpath segment for the dispersion trench must not overlap with other flowpath segments, except those associated with sheet flow from a non-native pervious surface.
C.2.4.5 USE OF SHEET FLOW FOR BASIC DISPERSION

Sheet flow, as a dispersion device, is the grading of a developed surface (either a strip of impervious surface or a width of non-native pervious surface) as needed to avoid the concentration of runoff before and after discharge from the surface. Two types of sheet flow, one for impervious surface and one for pervious surface, are detailed in this section.

Uses: Flat or moderately sloping surfaces (<15% slope) such as driveways, sport courts, patios, roofs without gutters, lawns, pastures, etc.; or any situation where concentration of flows can be avoided.

Design Specifications for Impervious Surface Sheet Flow (Basic Dispersion)

Figure C.2.4.D (p. C-58) illustrates a typical use of sheet flow dispersion for impervious surface in accordance with the following specifications:

1. The strip of impervious surface may be either roof (with no gutter) or pavement. The edge of the target impervious strip and the ground adjacent to or immediately below the edge must be either level or sloped such that the direction of sheet flow is perpendicular to the edge or no more than 45 degrees from perpendicular.

2. A 2-foot-wide, 4-to-6 inch-deep, strip of crushed rock or the extended base course of a road or driveway must be provided at or below the edge of the impervious strip to facilitate dispersal of runoff. This requirement may be waived for use of reverse slope sidewalks\footnote{Reverse slope sidewalk is one that slopes away from rather than onto the roadway it abuts as required by County road standards. If this technique is proposed within County right-of-way, a Road Variance will be required for its use.} and other impervious strips that are 10-feet wide or less.

3. A "vegetated flowpath segment" of at least 10 feet in length must be available along the flowpath that runoff would follow upon discharge from the strip of crushed rock.

4. No more than a 20-foot-wide strip of impervious surface may be sheet flowed in this manner unless the length of vegetated flowpath segment is increased 10 feet for each additional 20 feet of impervious surface width or fraction thereof.

5. For purposes of maintaining adequate separation of flows discharged from adjacent dispersion devices, the outer edge of the vegetated flowpath segment for the strip of impervious surface must not overlap with other flowpath segments, except those associated with sheet flow from a non-native pervious surface.

Design Specifications for Pervious Surface Sheet Flow (Basic Dispersion)

The runoff from any new pervious surface is considered dispersed by sheet flow if the runoff is not concentrated by a manmade or natural conveyance system (e.g., pipe, yard drain, drain tile, ditch, swale, etc.) within 25 feet of leaving the new pervious surface area or prior to leaving the site or entering a critical area buffer on the site.

C.2.4.6 MAINTENANCE INSTRUCTIONS FOR BASIC DISPERSION

If the basic dispersion flow control BMP is proposed for a project, the following maintenance and operation instructions must be recorded as an attachment to the required declaration of covenant and grant of easement per Requirement 3 of Section C.1.3.3 (p. C-18). The intent of these instructions is to explain to future property owners, the purpose of the BMP and how it must be maintained and operated. These instructions are intended to be a minimum; DDES may require additional instructions based on site-specific conditions. Also, as the County gains more experience with the maintenance and operation of these BMPs, future updates to the instructions will be posted on King County's Surface Water Design Manual website.
TEXT OF INSTRUCTIONS FOR BASIC DISPERSION

Your property contains a stormwater management flow control BMP (best management practice) called "basic dispersion," which was installed to mitigate the stormwater quantity and quality impacts of some or all of the impervious surfaces or non-native pervious surfaces on your property. Basic dispersion is a strategy for utilizing any available capacity of onsite vegetated areas to retain, absorb, and filter the runoff from developed surfaces. This flow control BMP has two primary components that must be maintained: (1) the devices that disperse runoff from the developed surfaces and (2) the vegetated area over which runoff is dispersed.

Dispersion Devices

The dispersion devices used on your property include the following as indicated on the flow control BMP site plan: splash blocks, rock pads, gravel filled trenches, and sheet flow. The size, placement, composition, and downstream flowpaths of these devices as depicted by the flow control BMP site plan and design details must be maintained and may not be changed without written approval either from the King County Water and Land Resources Division or through a future development permit from King County.

Dispersion devices must be inspected annually and after major storm events to identify and repair any physical defects. When native soil is exposed or erosion channels are present, the sources of the erosion or concentrated flow need to be identified and mitigated. Concentrated flow can be mitigated by leveling the edge of the pervious area and/or realigning or replenishing the rocks in the dispersion device, such as in rock pads and gravel filled trenches.

Vegetated Flowpaths

The vegetated area over which runoff is dispersed must be maintained in good condition free of bare spots and obstructions that would concentrate flows.

FIGURE C.2.4.A TYPICAL SPLASHBLOCK FOR BASIC DISPERSION

[Diagram of a typical splashblock for basic dispersion]
FIGURE C.2.4.B TYPICAL GRAVEL-FILLED DISPERSION TRENCH FOR BASIC DISPERSION

TRENCH X-SECTION

- 4" perf pipe
- 1 1/2" - 3/4" washed rock
- 24" min
- 18" min
- 6" min

level outlet

TRENCH X-SECTION

small catch basin or yard drain

≤700 sq. ft.

Simple 10-foot trench

>700 sq. ft.

25-Foot Vegetated Flowpath Segment

Type I CB

Maximum 50-foot trench w/notch board (see Figure C.2.1.D, p. C-32)

PLAN VIEW OF ROOF

≤700 sq. ft.

25-Foot Vegetated Flowpath Segment

>700 sq. ft.

New Design Manual Figure C8. Typical Downspout Dispersion Trench, Revised 5-6-98, mdev
FIGURE C.2.4.C EXAMPLES OF BASIC DISPERSION FOR STEEP DRIVEWAYS

Plan
Steep Driveway with Diagonal Berms

Plan
Steep Driveway with Slotted Drains

700 sq. ft. max. between berms
Locate drain 25' from ROW if driveway slopes toward street.

Diagonal berm with dispersion trench
25' vegetated flowpath segment

700 sq. ft. max. between drains
Locate drain 25' from ROW if driveway slopes toward street.

Slot drain with dispersion trench
25' vegetated flowpath segment

BERM DETAIL

6" min
2.4"
SECTION C.2 FLOW CONTROL BMPs

FIGURE C.2.4.D EXAMPLES OF BASIC DISPERSION FOR DRIVEWAYS

PLAN
Driveway Dispersion Trench
Driveway Slope Varies and Slopes Toward Street

PLAN
Sheet Flow Dispersion from a Driveway
Flat to Moderately Sloping Driveways
C.2.5 RAIN GARDEN

Rain gardens, also known as "bioretention," are excavated or otherwise formed depressions in the landscape that provide for storage, treatment, and infiltration of stormwater runoff. The soil in the depression is enhanced to promote infiltration and plant growth. Plants adapted to wet conditions are planted in the enhanced soil. Figure C.2.5.A (p. C-61) shows a plan view and section of a typical rain garden system.

Applicable Surfaces

Subject to the minimum design requirements and specifications in this section, rain gardens may be applied to any impervious surface such as a roof, driveway, parking area, road, or sidewalk, and to any non-native pervious surface such as a lawn, landscaped area, or pasture.

Design Considerations

Rain gardens may overflow occasionally in large storm events or more frequently if located in very poorly drained soils or areas with very high water tables. In very well-drained soils, water may drain too quickly to support water loving plants and ponding may be of short duration. Conditioning the soil in the rain garden with abundant compost will enhance the growth of plants and help the soil to more readily admit water.

Operation and Maintenance

See Section C.2.5.3 (p. C-63).

C.2.5.1 MINIMUM DESIGN REQUIREMENTS

All of the following requirements must be met in order for a rain garden to be applicable to a target impervious surface or new pervious surface:

1. A minimum water storage volume equivalent to 3 inches (0.25 feet) of runoff depth from the impervious surface area served is required. In other words, the volume in cubic feet shall equal 0.25 times the square footage of the impervious surface area served (see example calculation in Section C.2.5.2 below). For rain gardens serving new pervious surface, a minimum water storage volume equivalent to 0.5 inches (0.04 feet) of runoff depth is required.

2. The water storage area, containing the minimum required storage volume, shall be 12 inches deep at overflow and have side slopes no steeper than 3 horizontal to 1 vertical. The overflow point of the water storage area shall be at least 6 inches below any adjacent pavement area. The overflow point must be situated so that overflow does not cause erosion damage or unplanned inundation.

3. If a containment berm is used to form the water storage area, the berm must be at least 2 feet wide and 6 inches above the 12 inches of water depth. A catch basin or rock pad must be provided to release water when the pond's water level exceeds the 12 inches of water depth. The catch basin may discharge to the local drainage system or other acceptable discharge location via a 4-inch rigid pipe. The rock pad may be used with or without a constructed drainage system downstream. If a rock pad is used, it must be composed of crushed rock, 6-inches deep and 2 feet wide (perpendicular to flow) and must extend at least 4 feet or beyond the containment berm, whichever is greater. The rock pad must be situated so that overflow does not cause erosion damage or unplanned inundation.

4. Amended soil consisting of minimum of 4 inches of compost tilled into the upper 12 inches of soil or 12 inches of imported sand/compost blend having 8 to 13% organic material by dry weight is required in the rain garden. Tilling and amending to greater depth is desirable.

5. Water tolerant plants such as those in Table C.2.5.A shall be planted in the pond bottom. Plants native to Western Washington are preferred.
6. A minimum 5-foot setback shall be maintained between any part of a rain garden and any structure or property line.

7. Rain gardens are not allowed in critical area buffers or on slopes steeper than 20%. Rain gardens proposed on slopes steeper than 15% or within 50 feet of a steep slope hazard area or landslide hazard area must be approved by a geotechnical engineer or engineering geologist unless otherwise approved by the DDES staff geologist.

8. For sites with septic systems, rain gardens must be located downgradient of the primary and reserve drainfield areas. DDES permit review staff can waive this requirement if site topography clearly prohibits subsurface flows from intersecting the drainfield.

9. The rain garden must not create flooding or erosion impacts as determined by the DDES. If a rain garden is proposed near a landslide hazard area, erosion hazard area, steep slope hazard area, or a slope steeper than 15%, DDES may require evaluation and approval of the proposal by a geotechnical engineer or engineering geologist.

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
<th>Spacing (on center)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Western mannagrass</td>
<td>Glyceria occidentalis</td>
<td>seed</td>
</tr>
<tr>
<td>Velvetgrass</td>
<td>Holcus mollis</td>
<td>seed</td>
</tr>
<tr>
<td>Shortawn foxtail</td>
<td>Alopecurus aequalis</td>
<td>seed</td>
</tr>
<tr>
<td>Water foxtail</td>
<td>Alopecurus geniculatus</td>
<td>seed</td>
</tr>
<tr>
<td>Spike rush</td>
<td>Eleocharis spp.</td>
<td>4 inches</td>
</tr>
<tr>
<td>Slough sedge</td>
<td>Carex obnupta</td>
<td>6 inches or seed</td>
</tr>
<tr>
<td>Sawbeak sedge</td>
<td>Carex stipata</td>
<td>6 inches</td>
</tr>
<tr>
<td>Sedge</td>
<td>Carex spp.</td>
<td>6 inches</td>
</tr>
<tr>
<td>Slender rush</td>
<td>Juncus tenuis</td>
<td>6 inches</td>
</tr>
<tr>
<td>Water parsley</td>
<td>Oenanthe sarmentosa</td>
<td>6 inches</td>
</tr>
<tr>
<td>Hardstem bulrush</td>
<td>Scirpus acutus</td>
<td>6 inches</td>
</tr>
<tr>
<td>Watercress</td>
<td>Rorippa nasturtium-aquaticum</td>
<td>12 inches</td>
</tr>
<tr>
<td>Small-fruited bulrush</td>
<td>Scirpus microcarpus</td>
<td>12 inches</td>
</tr>
</tbody>
</table>

C.2.5.2 EXAMPLE SIZING CALCULATION

Runoff Source: 20-foot by 20-foot driveway

Minimum Storage Required = 3 inches (0.25 feet)

Storage Volume Needed = 20 feet \(\times \) 20 feet \(\times \) 0.25 feet = 100 cubic feet

Pond Design: Choosing a 1 foot depth with 3:1 side slopes and a bottom area of 4 feet \(\times \) 10 feet provides a storage volume of 100 cubic feet.

Note that if the soil percolation rate is 0.5 inches per hour, a pond 1-foot deep will take 24 hours to drain when filled. Similarly, a small storm of 0.5 inches would produce a depth of about 3 inches and drain in 6 hours.
FIGURE C.2.5.A TYPICAL RAIN GARDEN (BIORETENTION POND)

PLAN VIEW (not to scale)

SECTION VIEW A-A (not to scale)
FIGURE C.2.5.B TYPICAL RAIN GARDEN WITH CONTAINMENT BERM

PLAN VIEW (not to scale)

SECTION VIEW A-A (not to scale)
C.2.5.3 MAINTENANCE INSTRUCTIONS FOR A RAIN GARDEN

If the rain garden flow control BMP is proposed for a project, the following maintenance and operation instructions must be recorded as an attachment to the required declaration of covenant and grant of easement per Requirement 3 of Section C.1.3.3 (p. C-18). The intent of these instructions is to explain to future property owners, the purpose of the BMP and how it must be maintained and operated. These instructions are intended to be a minimum; DDES may require additional instructions based on site-specific conditions. Also, as the County gains more experience with the maintenance and operation of these BMPs, future updates to the instructions will be posted on King County's Surface Water Design Manual website.

TEXT OF INSTRUCTIONS

Your property contains a stormwater management flow control BMP (best management practice) called a "rain garden," which was installed to mitigate the stormwater quantity and quality impacts of some or all of the impervious or non-native pervious surfaces on your property. Rain gardens, also known as "bioretention," are vegetated closed depressions or ponds that retain and filter stormwater from an area of impervious surface or non-native pervious surface. The soil in the rain garden has been enhanced to encourage and support vigorous plant growth that serves to filter the water and sustain infiltration capacity. Depending on soil conditions, rain gardens may have water in them throughout the wet season and may overflow during major storm events.

The size, placement, and design of the rain garden as depicted by the flow control BMP site plan and design details must be maintained and may not be changed without written approval either from the King County Water and Land Resources Division or through a future development permit from King County. Plant materials may be changed to suit tastes, but chemical fertilizers and pesticides must not be used. Mulch may be added and additional compost should be worked into the soil over time.

Rain gardens must be inspected annually for physical defects. After major storm events, the system should be checked to see that the overflow system is working properly. If erosion channels or bare spots are evident, they should be stabilized with soil, plant material, mulch, or landscape rock. A supplemental watering program may be needed the first year to ensure the long-term survival of the rain garden's vegetation. Vegetation should be maintained as follows: 1) replace all dead vegetation as soon as possible; 2) remove fallen leaves and debris as needed; 3) remove all noxious vegetation when discovered; 4) manually weed without herbicides or pesticides; 5) during drought conditions, use mulch to prevent excess solar damage and water loss.
C.2.6 PERMEABLE PAVEMENT

Permeable pavements include porous concrete, porous asphalt, cellular confinement gravel systems, unit pavers with a gravel bed, and grassed modular grid systems. There are many types of permeable pavement on the market today. Permeable pavement systems require careful design, construction, and maintenance in order to provide good service life and proper drainage. Manufacturer's recommendations should be strictly followed for proprietary systems.

Applicable Surfaces

Subject to the minimum design requirements and specifications in this section, permeable pavement systems may be applied to driveways, parking areas, sidewalks, and roads that are privately owned and maintained. Permeable pavement is not allowed in King County maintained road right-of-way unless approved by a Road Variance.

Design Considerations

Application of permeable pavement on steeper slopes may not be suitable because water draining through permeable base may daylight downslope. Ideally, permeable pavement slopes should be less than 5%. Areas with a high water table or highly impervious soils may be unsuitable for this pavement type.

Operation and Maintenance

See Section C.2.6.7 (p. C-66).

C.2.6.1 MINIMUM DESIGN REQUIREMENTS

All of the following requirements must be met in order for permeable pavement to be applicable to a target impervious surface:

1. One of the following types of permeable pavement must be used in accordance with the design specifications for each type as set forth in Sections C.2.6.2 through C.2.6.6:
 - Porous concrete (see Section C.2.6.2, p. C-64)
 - Porous asphaltic concrete (see Section C.2.6.3, p. C-65)
 - Permeable pavers (see Section C.2.6.4, p. C-65)
 - Modular grid pavement (see Section C.2.6.5, p. C-65)
 - Grassed modular grid pavement (see Section C.2.6.6, p. C-66)

2. Permeable pavements shall be installed in accordance with the manufacturer's specifications, except when such specifications are less stringent than those set forth in Sections C.2.6.2 through C.2.6.6.

3. Permeable pavements shall not be placed on slopes steeper than 10%.

C.2.6.2 POROUS CONCRETE

Porous concrete consists of a mix of aggregate, cement paste, water and admixtures, but contains less fine aggregate than conventional concrete. Voids in the hardened concrete allow water to drain through the surface into the subgrade.

Uses: Sidewalks, patios, parking areas, and driveways.

Design Specifications

1. A minimum of 6 inches of free-draining sand or gravel base is required under the porous concrete surface.
2. The free-draining base shall have less than 5% fines (material passing the #200 sieve) based on the fraction passing the #4 sieve.

3. The porous concrete pavement shall be permeable enough to absorb water at a minimum rate of 10 inches per hour immediately after the pavement surface has been wetted continuously for at least 10 minutes. Compliance with this minimum rate shall be checked prior to construction approval of the pavement. Compliance may be checked using a simple bucket test in which 5 gallons of water are poured onto the pavement surface all at once from a 5-gallon bucket. If nothing but a scant amount of water puddles or runs off the surface, then the pavement is considered to meet the minimum rate of absorption. If this test is not conclusive, then a 6-inch ring sealed at the base to the pavement surface shall be used to measure the actual rate of absorption.

4. Porous concrete sidewalks placed in County road right-of-way (note that a road variance is required for such placement) or on private property subject to vehicle loading shall be a minimum of 5 inches thick and shall have a minimum 28-day compressive strength of 3000 psi.

5. Sidewalks and patios on private property not subject to vehicles shall be a minimum of 4 inches thick and should have a minimum 28-day compressive strength of 2000 psi.

C.2.6.3 POROUS ASPHALTIC CONCRETE

Porous asphaltic concrete uses a mix that contains less fine aggregate than conventional asphaltic concrete. Voids in the pavement allow water to drain through the surface into the subgrade.

Uses: Sidewalks, patios, parking areas, and driveways.

Design Specifications

Same as for porous concrete, except that the compressive strength specifications do not apply and the pavement section shall be as needed to provide a service life equivalent to conventional asphaltic concrete.

C.2.6.4 PERMEABLE PAVERS

Permeable pavers provide a solid surface but allow natural drainage and migration of water into the earth by permitting water to drain through the spaces between the pavers. On the Internet, there are a number of manufacturers and installers.

Uses: Sidewalks, patios, parking areas, and driveways.

Design Specifications

Same as for porous concrete, except that the compressive strength specifications do not apply and the pavement thickness shall be as specified by the manufacturer or a civil engineer.

C.2.6.5 MODULAR GRID PAVEMENT

Modular grid pavement consists of a lattice of concrete, plastic, or other load bearing material over a permeable base of gravel or sand (or both). On the Internet, there is information on several manufacturers of the modular grid materials used for such pavement. These materials include plastic lattice, concrete pavers, or special forms for a cast-in-place concrete grid. These systems use a confining structure incorporated into the subgrade with an engineered fill material.

Uses: Low-traffic or infrequently used areas such as low-traffic driveways, overflow parking, event parking, church parking, employee parking, maintenance access roads, etc.; they are not allowed in King County road right-of-way.
Design Specifications
1. A minimum of 6 inches of free draining base material (sand or gravel) is required under the modular grid material.
2. The modular grid material must be installed according to the manufacturer's instructions.
3. The surface area of the modular grid openings must be at least 50% of the total surface area of the modular grid pavement.
4. The modular grid openings must be filled with gravel, sand, or a mixture of both.
5. Smooth surface walkways may be run across modular grid pavements, provided the impervious surfaced walkways do not exceed 10 percent of the total pavement surface.

C.2.6.6 GRASSED MODULAR GRID PAVEMENT

Grassed modular grid pavement is basically a modular grid pavement with grass planted in the openings or in a thin layer of soil over the grid material. The benefits of this measure are reduced runoff peaks and volumes resulting from the increased infiltration of stormwater, the increased water storage provided in the grid soil and base, and the increased evapotranspiration provided by the grass. The grassed surface also helps remove pollutants that are left behind by vehicles.

Uses: Low-traffic or infrequently used areas such as low-traffic driveways, overflow parking, event parking, church parking, employee parking, maintenance access roads, etc.; they are not allowed in King County road right-of-way.

Design Specifications
1. A minimum of 6 inches of free draining base material (sand or gravel) is required under the modular grid material.
2. The modular grid material must be installed according to the manufacturer's instructions.
3. The surface area of the modular grid openings must be at least 50% of the total surface area of the modular grid pavement.
4. The modular grid openings must be filled with a sandy soil mix suitable for growing grass as specified by the manufacturer's instructions or a landscape architect.
5. Smooth surface walkways may be run across modular grid pavements, provided the impervious surfaced walkways do not exceed 10 percent of the total pavement area.

C.2.6.7 MAINTENANCE INSTRUCTIONS FOR PERMEABLE PAVEMENT

If the permeable pavement flow control BMP is proposed for a project, the following maintenance and operation instructions, plus any provided by the manufacturer or installer, must be recorded as an attachment to the required declaration of covenant and grant of easement per Requirement 3 of Section C.1.3.3 (p. C-18). The intent of these instructions is to explain to future property owners, the purpose of the BMP and how it must be maintained and operated. These instructions are intended to be a minimum; DDES may require additional instructions based on site-specific conditions or manufacturer's recommendations. Also, as the County gains more experience with the maintenance and operation of these BMPs, future updates to these instructions will be posted on King County's Surface Water Design Manual website.

☐ TEXT OF INSTRUCTIONS FOR NON-VEGETATED PERMEABLE PAVEMENT

Your property contains a stormwater management flow control BMP (best management practice) called "permeable pavement," which was installed to minimize the stormwater quantity and quality impacts of
some or all of the paved surfaces on your property. Permeable pavements reduce the amount of rainfall that becomes runoff by allowing water to seep through the pavement into a free-draining gravel or sand bed, where it can be infiltrated into the ground.

The type(s) of permeable pavement used on your property is: ☐ porous concrete, ☐ porous asphaltic concrete, ☐ permeable pavers, ☐ modular grid pavement.

The area covered by permeable pavement as depicted by the flow control BMP site plan and design details must be maintained as permeable pavement and may not be changed without written approval either from the King County Water and Land Resources Division or through a future development permit from King County.

Permeable pavements must be inspected after one major storm each year to make sure it is working properly. Prolonged ponding or standing water on the pavement surface is a sign that the system is defective and may need to be replaced. If this occurs, contact the pavement installer or the King County Water and Land Resources Division for further instructions. A typical permeable pavement system has a life expectancy of approximately 25-years. To help extend the useful life of the system, the surface of the permeable pavement should be kept clean and free of leaves, debris, and sediment through regular sweeping or vacuum sweeping. The owner is responsible for the repair of all ruts, deformation, and/or broken paving units.

☑ TEXT OF INSTRUCTIONS FOR VEGETATED PERMEABLE PAVEMENT

Your property contains a stormwater management flow control BMP (best management practice) called "grassed modular grid pavement," which was installed to minimize the stormwater quantity and quality impacts of some or all of the paved surfaces on your property. Grassed modular grid pavement has the runoff characteristics of a lawn while providing the weight-bearing capacity of concrete pavement. The grassed surface not only minimizes runoff quantity, it helps to filter pollutants generating by vehicular use of the surface.

The composition and area of grassed modular grid pavement as depicted by the flow control BMP site plan and design details must be maintained and may not be changed without written approval either from the King County Water and Land Resources Division or through a future development permit from King County.

Grassed modular grid pavement must be inspected after one major storm each year to make sure it is working properly. Prolonged ponding or standing water on the pavement surface is a sign that the system defective and may need to be replaced. If this occurs, contact the pavement installer or the King County Water and Land Resources Division for further instructions. The grassed surface of the pavement must be regularly mowed and maintained in a good condition. Bare spots must be replanted in the spring or fall.
C.2.7 RAINWATER HARVESTING

Rainwater harvesting means the collection and storage of roof runoff for domestic or irrigation uses. Rainwater harvesting systems include a collection area, a filter, a storage device and an outflow device. Storage may be above ground or below grade and may consist of tanks or vaults. Example configurations are shown in Figure C.2.7.A (p. C-69) and Figure C.2.7.B (p. C-69). The stored water may be used for any domestic purpose including irrigation. The distribution system may be gravity or pumped.

Applicable Surfaces

Subject to the minimum design requirements and specifications in this section, rainwater harvesting systems may be used with any roof area.

Design Considerations

Provisional specifications available in the State UBC for commercial rainwater systems may be used for guidance in designing the various elements of a non-commercial system. Note that a water right may be required to collect and use rainwater.

Operation and Maintenance

See Section C.2.7.3 (p. C-70) and Minimum Design Requirement 2 below.

C.2.7.1 MINIMUM DESIGN REQUIREMENTS

All of the following requirements must be met in order for rainwater harvesting to be applicable to a target impervious surface:

1. The system must be designed to collect and use at least 95% of the average annual runoff volume from the target impervious surface. To show this, water balance calculations must be submitted with the small project drainage plan. Such calculations may be prepared by the system's manufacturer or installer. Note: the area of roof directed to the system must be matched to the system's capacity. Additional roof area shall not be connected to the system. Overloading the system will cause the storage to fill in the fall and overflow in the winter when flow mitigation is needed most.

2. To assure the system functions as designed and provides the required stormwater management, system-specific maintenance and operation instructions must be submitted with the small project drainage plan and approved by DDES. Such instructions should be prepared by the system's manufacturer or installer.

3. A minimum 5-foot setback shall be maintained between any part of the rainwater harvesting system and any property line.

C.2.7.2 EXAMPLE SIZING CALCULATION

Target impervious surface: 1,000 square feet of roof area

Desired use: Use system to store roof runoff for summer irrigation

Amount of runoff: Assume an average annual runoff depth of 30 inches (2.5 feet) for the King County area based on an annual average precipitation of 36 inches

Storage Volume = 1,000 square feet x 2.5 feet runoff depth = 2,500 cubic feet or 20,000 gallons
FIGURE C.2.7.A TYPICAL ABOVE GROUND RESERVOIR CONFIGURATION (STENSROD, 1978)

FIGURE C.2.7.B VARIOUS POSSIBLE RESERVOIR CONFIGURATIONS (STENSROD, 1978)
C.2.7.3 MAINTENANCE INSTRUCTIONS FOR RAINWATER HARVESTING

If the rainwater harvesting flow control BMP is proposed for a project, the following maintenance and operation instructions must be incorporated into the maintenance and operation instructions required per Minimum Design Requirement 2. All such instructions must be recorded as an attachment to the required declaration of covenant and grant of easement per Requirement 3 of Section C.1.3.3 (p. C-18). The intent of these instructions is to explain to future property owners, the purpose of the BMP and how it must be maintained and operated. These instructions are intended to be a minimum; DDES may require additional instructions based on site-specific conditions or manufacturer's recommendations. Also, as the County gains more experience with the maintenance and operation of these BMPs, future updates to these instructions will be posted on King County's Surface Water Design Manual website.

TEXT OF INSTRUCTIONS

Your property contains a stormwater management flow control BMP (best management practice) called "rainwater harvesting," which was installed to minimize the stormwater runoff impacts of impervious surface on your property. Rainwater harvesting is a means for the collection and storage of roof runoff for domestic or irrigation use. Rainwater harvesting systems include a collection area, a filtering system, a storage device, and an outflow device.

The size, components, and configuration of the rainwater system as depicted by the flow control BMP site plan and design details must be maintained and may not be changed without written approval either from the King County Water and Land Resources Division or through a future development permit from King County.

The collection area (e.g., roof) should be routinely inspected for debris and other material that could impede the entrance and/or exit of surface flows. The filtering system should be periodically inspected for effectiveness and replaced or replenished as recommended by the manufacturer. The storage device must be drained completely during the dry season (May 1st - September 30th) in order to provide the needed capacity for an entire wet season. A maintenance log should be kept on site with the aforementioned information and dates of maintenance performance. King County inspection staff may request to view the maintenance log at any time.
C.2.8 VEGETATED ROOF

Vegetated roofs (also called green roofs) consist of a pervious growing medium, plants and a moisture barrier. There are currently several different proprietary systems available that use different media types and thickness. Figure C.2.8.A (p. C-72) shows a typical cross-section, but actual design specifications should come from the manufacturer and installer. The benefits of this BMP are reduced runoff peaks and volumes resulting from the increased water storage provided by the soil and the increased evapotranspiration provided by the vegetation.

Applicable Surfaces

Subject to the minimum design requirements and specifications in this section, vegetated roof systems may be applied to any roof area.

Design Considerations

The roof must be designed to carry the added load of a vegetated roof system; therefore design by a structural engineer may be needed.

Operation and Maintenance

See Section C.2.8.3 (p. C-72).

C.2.8.1 MINIMUM DESIGN REQUIREMENTS

All of the following requirements must be met in order for a vegetated roof to be applicable to a target impervious surface:

1. A 60- to 80-mil reinforced PVC membrane must be placed on the roof surface to provide waterproofing and protect against root penetration, or if the roof is asphalt-based, the membrane must be high-density polyethylene (HDPE).

2. If the roof surface is flat or has a pitch flatter than 1 in 12, an underdrain system or layer must be provided to drain excess water away from the root zone of the soil layer.

3. The growing medium must have the capacity to store a minimum depth of 3 inches of water for full BMP credit, partial credit will be given for reduced storage.

4. The soil layer must be adequately contained on the roof with sidewalls or other appropriate means.

5. The composition of the soil layer must be confirmed by a civil engineer as meeting the desired soil storage and the maximum allowable loading specified by the structural engineer.

6. Grass or other vegetative cover suitable for shallow soils and harsh roof conditions (e.g., various species of sedum, sempervivum, creeping thyme, allium, phloxes, antennaria, armeria, and aubrieta) shall be used.

7. Vegetated roofs must not be subject to any use that would significantly compact the soil.

8. Provision must be made for supplemental irrigation during the first dry season to ensure plant survival, replacing any dead plants, and removal of weeds and leaves, clearing drain inlets.

C.2.8.2 EXAMPLE SIZING CALCULATION

Target impervious surface area: 1,000 square feet.

Proposed vegetated roof system provides 1.5 inches storage.

Required vegetated roof area = 1000 x 3 ÷ 1.5 = 2,000 square feet.
C.2.8.3 MAINTENANCE INSTRUCTIONS FOR VEGETATED ROOFS

If the vegetated roof flow control BMP is proposed for a project, the following maintenance and operation instructions, plus any provided by the manufacturer or installer, must be recorded as an attachment to the required declaration of covenant and grant of easement per Requirement 3 of Section C.1.3.3 (p. C-18). The intent of these instructions is to explain to future property owners, the purpose of the BMP and how it must be maintained and operated. These instructions are intended to be a minimum; DDES may require additional instructions based on site-specific conditions or manufacturer’s recommendations. Also, as the County gains more experience with the maintenance and operation of these BMPs, future updates to these instructions will be posted on King County's Surface Water Design Manual website.

☐ TEXT OF INSTRUCTIONS FOR VEGETATED ROOFS

Your property contains a stormwater management flow control BMP (best management practice) called a "vegetated roof," which was installed to minimize the stormwater runoff impacts of the impervious surfaces on your property. Vegetated roofs (also called green roofs) consist of a pervious growing medium, plants, and a moisture barrier. The benefits of this device are a reduction in runoff peaks and volumes due to the storage capabilities of the soil and increased rate of evapotranspiration.
The composition and area of vegetated roof as depicted by the flow control BMP site plan and design details must be maintained and may not be changed without written approval either from the King County Water and Land Resources Division or through a future development permit from King County. Vegetated roofs must not be subject to any use that would significantly compact the soil.

Vegetated roofs must be inspected annually for physical defects and to make sure the vegetation is in good condition. If erosion channels or bare spots are evident, they should be stabilized with additional soil similar to the original material. A supplemental watering program may be needed the first year to ensure the long-term survival of the roof's vegetation. Vegetation should be maintained as follows: (1) replace all dead vegetation as soon as possible; (2) remove fallen leaves and debris; (3) remove all noxious vegetation when discovered; and (4) manually weed without herbicides or pesticides.
C.2.9 REDUCED IMPERVIOUS SURFACE CREDIT

Reduced impervious surface credit means a credit toward meeting impervious surface flow control BMP requirements through application of techniques that result in less impervious surface coverage than is typically constructed or allowed for a particular land use. The credit may be used to mitigate for impervious surface to which flow control BMPs must be applied as specified by BMP Requirement 3 in either Section C.1.3.1.A (p. C-13) or Section C.1.3.2.A (p. C-15).

To receive the credit, a reduction in impervious surface below established norms must be assured through covenant and/or alternative design of impervious surfaces as described in the subsections below. For every square foot of reduced impervious surface assured, an equal area of actual proposed target impervious surface may be credited as mitigated, provided the runoff from the credited area is either directed to vegetated pervious areas on the site or discharged through a perforated pipe connection per Section C.2.11 (p. C-80).

Applicable Surfaces

Subject to the minimum design requirements and specifications in this section, the reduced impervious surface credit may be applied to any impervious surface such as a roof, driveway, parking area, or road.

Operation and Maintenance

See Section C.2.9.7 (p. C-77).

C.2.9.1 MINIMUM DESIGN REQUIREMENTS

All of the following requirements must be met in order for the reduced impervious surface credit to be applicable to a target impervious surface:

1. One or more of the following techniques must be used to reduce, restrict, or otherwise mitigate for impervious surface subject to flow control BMPs:
 - Restricted footprint (see Section C.2.9.2 below)
 - Wheel strip driveways (see Section C.2.9.3, p. C-75)
 - Minimum disturbance foundation (see Section C.2.9.4, p. C-75)
 - Open grid decking over pervious surface (see Section C.2.9.5, p. C-75)

2. The area of target impervious surface credited as mitigated by the reduced impervious surface credit must meet all of the following requirements:
 a) The area credited as mitigated must be no more than 10,000 square feet on any one site/lot unless the surface is served by a flow control facility designed by a civil engineer in accordance with Section 1.2.3 of the SWDM.
 b) Any runoff from the area credited as mitigated must be directed to vegetated pervious areas on the site/lot or discharged through a perforated pipe connection per Section C.2.11 (p. C-80).
 c) Any portion of the area credited as mitigated that is pollution-generating impervious surface must be less than 5,000 square feet on any one site/lot unless the surface is served by a water quality treatment facility designed by a civil engineer in accordance with Section 1.2.8 of the SWDM.
C.2.9.2 RESTRICTED FOOTPRINT

Restricted footprint means the recording of a covenant that limits the amount of future impervious surface coverage on a site/lot to an amount less than the norm as specified below:

1. For sites/lots that are smaller than 22,000 square feet, any recorded limit on total impervious surface less than a norm of 4,000 square feet or the maximum allowed by the site/lot's zoning, whichever is smaller, qualifies for a restricted footprint credit equal to the difference in square footage. In other words, for every square foot that the recorded limit is below the norm, an equal area of actual proposed target impervious surface is credited as mitigated subject to Minimum Design Requirement 2 in Section C.2.9.1.

2. For sites/lots that are between 22,000 square feet and 250,000 square feet, any recorded limit of total impervious surface in an amount less than a norm of 4,000 square feet or 4% of the site/lot area, whichever is greater, qualifies for a restricted footprint credit equal to the difference in square footage. For every square foot that the recorded limit is below the norm, an equal area of actual proposed target impervious surface is credited as mitigated subject to Minimum Design Requirement 2 in Section C.2.9.1.

3. For sites/lots that are greater than 250,000 square feet, no restricted footprint credit is available.

C.2.9.3 WHEEL STRIP DRIVEWAYS

Wheel strip driveways consist of two pavement strips and grass planted in amended soil, all within a "driveway width norm" of 10 feet. Subject to Minimum Design Requirement 2 in Section C.2.9.1, an area of actual proposed target impervious surface equal to the driveway length times 10 feet of width is credited as mitigated if all of the following requirements are met:

1. The pavement strips must be no more than 2.5-feet wide.

2. At least 4 feet of the driveway width must be amended soil planted with grass. The amended soil must consist of at least 4 inches of well-rotted compost tilled into the upper 8 inches of the soil between the impervious strips.

C.2.9.4 MINIMUM DISTURBANCE FOUNDATION

Minimum disturbance foundations consist of pile or pier supports such that all or a portion of the finished living space is elevated over a pervious surface. The intent of this system is to provide additional storage for runoff in the soil beneath the structure. Subject to Minimum Design Requirement 2 in Section C.2.9.1, this technique qualifies for a 100% credit if the following requirements are met:

1. The pervious surface beneath the elevated portion of the structure must be either undisturbed native soil or amended soil. Any amended soil must consist of at least 4 inches of well-rotted compost tilled into the upper 8 inches of the soil.

2. Runoff from the structure must be discharged via downspouts or sheet flow onto a vegetated surface or into a 4 to 6-inch gravel bed within close proximity of the elevated structure. Runoff discharging from downspouts onto a vegetated surface must be via splash blocks.

C.2.9.5 OPEN GRID DECKING OVER PERVIOUS SURFACE

Open grid decking over pervious surface is a steel, plastic, or wood deck with regularly spaced openings suspended over a pervious surface. Such decking may be used as an alternative to impervious surface for such applications as parking or other vehicle use, and/or walkways, etc. This technique qualifies for a 100% credit if the following requirements are met:

1. The pervious surface beneath the decking must be either undisturbed native soil or amended soil.
Any amended soil must consist of at least 4 inches of well-rotted compost tilled into the upper 8 inches of the soil.

2. The full area of decking over pervious surface may be used to qualify for a reduced impervious surface credit subject to Minimum Design Requirement 2 in Section C.2.9.1. This means that for every square foot of decking over pervious surface, an equal amount of target impervious surface is considered mitigated, except as restricted by Minimum Design Requirement 2 in Section C.2.9.1.

3. The openings in the decking must be at least 8% of the surface area and must be evenly distributed across the surface such that there are at least 2 openings per square foot.

4. The decking and its supports shall be designed by a civil engineer or structural engineer as deemed necessary by DDES.

C.2.9.6 EXAMPLE CREDIT CALCULATIONS

A project proposes to add 3,500 square feet of impervious surface to a 2-acre lot, which includes a 2,575 square-foot house (footprint) with a 1,600 square foot minimum disturbance foundation, a 600 square-foot parking pad, 25-foot-long wheel strip driveway (125 square feet), and a 200 square-foot wood deck. The 3,500 sf of impervious surface includes the two concrete wheel strips, which are each 2.5 feet wide (125 sf). The project is subject to the large lot BMP requirements in Section C.1.3.2, which means all new impervious surface (i.e., target impervious surface) must be mitigated with flow control BMPs. Full dispersion and full infiltration are not applicable or feasible. Therefore, other flow control BMPs in Section C.2 must be used to mitigate all 3,500 square feet of proposed target impervious surface.

Restricted Footprint

Because the 3,500 square feet of proposed impervious surface is less than the established norm for the lot of 4,000 square feet, the project is eligible for a reduced footprint credit if a covenant is recorded that limits impervious surface coverage to the 3,500 square feet proposed.

Therefore, the area of target impervious surface credited as mitigated is: 4,000 sf – 3,500 sf = **500 sf**

This leaves a remaining impervious area of 3,000 sf that must be mitigated by other flow control BMPs.

Wheel Strip Driveway

If the wheel strip driveway complies with the specifications in Section C.2.9.3, an area of actual proposed target impervious surface equal to the area that would be covered by a 10-foot-wide driveway (i.e., the established "driveway width norm") is credited as mitigated. The wheel strips themselves are considered part of the actual proposed target impervious surface area being credited as mitigated.

Thus, the area of target impervious surface credited as mitigated is: 10 ft x 25 ft = **250 sf**

This leaves a remaining impervious area of 2,750 sf that must be mitigated by other flow control BMPs.

Minimum Disturbance Foundation

If the 1,600 square foot minimum disturbance foundation complies with the specifications in Section C.2.9.4, the foundation area is credited at 100%.

Thus, the area of target impervious surface credited as mitigated is: **1,600 sf**

This leaves a remaining impervious area of 1,150 sf that must be mitigated by other flow control BMPs.

Open Grid Decking Over Pervious Surface

If the 200 square-foot wood deck complies with the specifications in C.2.9.5, the deck is credited at 100%.

Thus, the total area of target impervious surface credited as mitigated is: **200 sf**

This leaves a remaining impervious area of 950 sf that must be mitigated by other flow control BMPs.
C.2.9.7 MAINTENANCE INSTRUCTIONS

If a reduced impervious surface flow control BMP is proposed for a project, one or more of the following sets of maintenance and operation instructions, whichever are applicable, must be recorded in or as an attachment to the required declaration of covenant and grant of easement per Requirement 3 of Section C.1.3.3 (p. C-18). The intent of these instructions is to explain to future property owners, the purpose of the BMP and how it must be maintained and operated. These instructions are intended to be a minimum; DDES may require additional instructions based on site-specific conditions. Also, as the County gains more experience with the maintenance and operation of these BMPs, future updates to the instructions will be posted on the King County's Surface Water Design Manual website.

☐ TEXT OF INSTRUCTIONS FOR RESTRICTED FOOTPRINT

Your property contains a stormwater management flow control BMP (best management practice) known as "restricted footprint," the practice of restricting the amount of impervious surface that may be added to a property so as to minimize the stormwater runoff impacts caused by impervious surface. The total impervious surface on your property may not exceed __________ square feet without written approval either from the King County Water and Land Resources Division or through a future development permit from King County.

☐ TEXT OF INSTRUCTIONS FOR WHEEL STRIP DRIVEWAYS

Your property contains a stormwater management flow control BMP (best management practice) called a "wheel strip driveway," which was installed to minimize or mitigate for the stormwater runoff impacts of some or all of the impervious surfaces on your property. The placement and composition of the wheel strip driveway as depicted by the flow control BMP site plan and design details must be maintained and may not be changed without written approval either from the King County Water and Land Resources Division or through a future development permit from King County.

☐ TEXT OF INSTRUCTIONS FOR MINIMUM DISTURBANCE FOUNDATIONS

Your property contains a stormwater management flow control BMP (best management practice) known as a "minimum disturbance foundation," which was installed to minimize or mitigate for the stormwater runoff impacts of some or all of the impervious surfaces on your property. This means that all or a portion of the finished living space in your house is elevated over a pervious surface through the use of piers or piles. The pervious surface is intended to provide additional capacity to absorb and store the stormwater runoff from your roof and surrounding areas.

The design of this system as depicted by the flow control BMP site plan and design details must be maintained and may not be changed without written approval either from the King County Water and Land Resources Division or through a future development permit from King County. In addition, the pervious surface beneath the elevated portion of your house must not be used in manner that compacts the soil.

☐ TEXT OF INSTRUCTIONS FOR OPEN GRID DECKING OVER PERVIOUS SURFACE

Your property contains a stormwater management flow control BMP (best management practice) called "open grid decking over pervious surface," which was installed to minimize or mitigate for the stormwater runoff impacts of some or all of the impervious surfaces on your property. The decking has evenly spaced openings that allow rain water to reach the uncompacted soil below, where it has an opportunity to soak into the ground.

The area and openings of the decking as depicted by the flow control BMP site plan and design details must be maintained and may not be changed without written approval either from the King County Water and Land Resources Division or through a future development permit from King County. In addition, the pervious surface beneath the decking must not be used in manner that compacts the soil.
C.2.10 NATIVE GROWTH RETENTION CREDIT

Native growth retention credit means a credit toward meeting impervious surface flow control BMP requirements through voluntary preservation of native vegetated surface on otherwise unencumbered land that is flat to moderately sloped. The credit may be used to mitigate for impervious surface to which flow control BMPs must be applied as specified by BMP Requirement 3 in Section C.1.3.1.A (p. C-13) or Section C.1.3.2.A (p. C-15).

To receive the credit, at least 3.5 square feet of native vegetated surface must be preserved for every square foot of impervious surface to be mitigated by the native vegetated surface. In other words, for every 3.5 square feet of native vegetated pervious surface preserved, one square foot of target impervious surface may be credited as mitigated, provided the runoff from the credited area is either directed to vegetated pervious areas on the site or discharged through a perforated pipe connection per Section C.2.11 (p. C-80).

Applicable Surfaces

Subject to the minimum design requirements and specifications in this section, the native growth retention credit may be applied to any impervious surface such as a roof, driveway, parking area, or road.

Operation and Maintenance

See Section C.2.10.3 (p. C-79).

C.2.10.1 MINIMUM DESIGN REQUIREMENTS

All of the following requirements must be met in order for the native growth retention credit to be applicable to a target impervious surface:

1. The area of native vegetated surface being preserved (donor area) to mitigate for target impervious surface must meet all of the following criteria:
 a) The donor area must be 3.5 times the area of impervious surface being credited as mitigated by the native vegetated surface.
 b) The donor area must consist of native vegetated surface, which means that the area may be either existing forest or forest created in accordance with the specifications for "native vegetated landscape" in Section C.2.1.8 (p. C-37).
 c) The donor area must be in addition to any required set-asides for recreation, critical areas (and applicable buffers), or to meet the clearing standards in KCC 16.82.150.
 d) The donor area must not slope more than 15%.
 e) The donor area must be set aside as "native growth retention area" as specified in Section C.2.1.9 (p. C-39). Note, this area may be used to manage dispersed stormwater from other areas within the site.

2. The area of target impervious surface credited as being mitigated by the native growth retention credit must meet all of the following requirements:
 a) The area credited as mitigated must be no more than 10,000 square feet on any one site unless the surface is served by a flow control facility designed by a civil engineer in accordance with Section 1.2.3 of the SWDM.
 b) Any runoff from the area credited as mitigated must be directed to vegetated pervious areas on the site/lot or discharged through a perforated pipe connection per Section C.2.11 (p. C-80).
c) Any portion of the area credited as mitigated that is pollution-generating impervious surface must be less than 5,000 square feet on any one site unless the surface is served by a water quality treatment facility designed by a civil engineer in accordance with Section 1.2.8 of the SWDM.

C.2.10.2 EXAMPLE SIZING CALCULATION

Area of target impervious surface to be credited as mitigated: 500 square feet
Donor area of native vegetated surface that must be preserved: 500 x 3.5 = 1,750 square feet

C.2.10.3 MAINTENANCE INSTRUCTIONS

If the native growth retention credit flow control BMP is proposed for a project, the following maintenance and operation instructions must be recorded as an attachment to the required declaration of covenant and grant of easement per Requirement 3 of Section C.1.3.3 (p. C-18). The intent of these instructions is to explain to future property owners, the purpose of the BMP and how it must be maintained and operated. These instructions are intended to be a minimum; DDES may require additional instructions based on site-specific conditions. Also, as the County gains more experience with the maintenance and operation of these BMPs, future updates to the instructions will be posted on King County's Surface Water Design Manual website.

TEXT OF INSTRUCTIONS

Your property contains a stormwater management flow control BMP (best management practice) known as "native growth retention," the practice of preserving a portion of a property in a native vegetated condition (e.g., forest) so as to minimize increases in stormwater runoff from clearing and to offset the stormwater runoff impacts caused by impervious surfaces on your property. This native vegetated area on your property was set aside by covenant as "native growth retention area."

The "native growth retention area" is delineated on the flow control BMP site plan attached to the covenant. The trees, vegetation, ground cover, and soil conditions in this area may not be disturbed, except as allowed by the following provisions:

1. Trees may be harvested in accordance with a King County-approved forest management plan.
2. Individual trees that have a structural defect due to disease or other defects, and which threaten to damage a structure, road, parking area, utility, or place of employment or public assembly, or block emergency access, may be topped, pruned, or removed as needed to eliminate the threat.
3. Dead or fallen trees, tree limbs within ten feet of the ground, and branches overhanging a residence may be removed to reduce the danger of wildfire.
4. Noxious weeds (i.e., plant species listed on the State noxious weed list in Chapter 16-750 WAC) and invasive vegetation (i.e., plant species listed as obnoxious weeds on the noxious weed list adopted by the King County Department of Natural Resources and Parks) may be removed.
5. Passive recreation uses and related facilities, including pedestrian, equestrian community and bicycle trails, nature viewing areas, fishing and camping areas, and other similar uses that do not require permanent structures, are allowed if clearing and soil compaction associated with these uses and facilities does not exceed eight percent of the native growth retention area.
C.2.11 PERFORATED PIPE CONNECTION

Perforated pipe connections are intended to convey concentrated runoff from impervious surfaces (usually roof runoff) directly to a local drainage system while providing some infiltration of that runoff in the process. They are required for any pipe connection of roof downspouts to the local drainage system regardless of the extent to which flow control BMPs are required or being used onsite. Perforated pipe connections are intended to provide for some infiltration during drier periods (late spring through early fall), which may help dampen the flashiness of stream flows in developed areas and provide some groundwater recharge. During the wet winter months, however, this BMP likely provides little or no flow control benefits. Therefore, it is not credited with mitigating target impervious surface.

Applicable Surfaces
Subject to the minimum design requirements below, the perforated pipe connection may be applied to concentrated runoff from any impervious surface or non-native pervious surface.

Operation and Maintenance
See Section C.2.11.2 (below).

C.2.11.1 MINIMUM DESIGN REQUIREMENTS

Figure C.2.11.A (p. C-81) illustrates a perforated pipe connection for a typical single family residence. Impervious areas larger than 10,000 square feet and non-native pervious areas larger than 35,000 square feet may require larger pipe to adequately convey flows and should be designed by a civil engineer.

Perforated pipe connections must be installed according to the following requirements:

1. Where possible, the perforated pipe connection must be placed in native soil to maximize infiltration of water, and must not be located under impervious surfaces, except as a last resort.
2. The gravel filled trench must be at least 10-feet in length for every 10,000 square feet of impervious surface or 35,000 square feet of non-native pervious surface from which runoff is conveyed.
3. The perforated portion of the system may not be placed in a critical area buffer or on slopes steeper than 25%. Any proposed placement of the perforated portion on slopes steeper than 15% or within 50 feet of a steep slope hazard area or landslide hazard area must be approved by a geotechnical engineer or engineering geologist unless otherwise approved by the DDES staff geologist.
4. For sites with septic systems, the perforated portion of the system must be down slope of the drainfield primary and reserve areas. DDES permit review staff can waive this requirement if site topography clearly prohibits subsurface flows from intersecting the drainfield.
5. The perforated pipe connection must not create flooding or erosion impacts as determined by DDES. If the system discharges toward or is near a landslide hazard area, erosion hazard area, steep slope hazard area, or a slope steeper than 15%, DDES may require evaluation and approval of the proposal by a geotechnical engineer or engineering geologist.

C.2.11.2 MAINTENANCE INSTRUCTIONS

If the perforated pipe connection flow control BMP is required for a project, the following maintenance and operation instructions must be recorded as an attachment to the required declaration of covenant and grant of easement per Requirement 3 of Section C.1.3.3 (p. C-18). The intent of these instructions is to explain to future property owners, the purpose of the BMP and how it must be maintained and operated. These instructions are intended to be a minimum; DDES may require additional instructions based on site-specific conditions. Also, as the County gains more experience with the maintenance and operation of these BMPs, future updates to the instructions will be posted on King County's Surface Water Design Manual website.
TEXT OF INSTRUCTIONS

Your property contains a stormwater management flow control BMP (best management practice) called a "perforated pipe connection," which was installed to reduce the stormwater runoff impacts of some or all of the impervious surface on your property. A perforated pipe connection is a length of drainage conveyance pipe with holes in the bottom, designed to "leak" runoff, conveyed by the pipe, into a gravel filled trench where it can be soaked into the surrounding soil. The connection is intended to provide opportunity for infiltration of any runoff that is being conveyed from an impervious surface (usually a roof) to a local drainage system such as a ditch or roadway pipe system.

The size and composition of the perforated pipe connection as depicted by the flow control BMP site plan and design details must be maintained and may not be changed without written approval either from the King County Water and Land Resources Division or through a future development permit from King County. The soil overtop of the perforated portion of the system must not be compacted or covered with impervious materials.

FIGURE C.2.11.A PERFORATED PIPE CONNECTION FOR A SINGLE FAMILY RESIDENCE

TRENCH X-SECTION

PLAN VIEW OF ROOF
C.3 EROSION AND SEDIMENT CONTROL (ESC) MEASURES

This section presents the specifications for the kinds of the ESC measures applicable to small project sites as allowed by the County’s ESC Standards (Detached Appendix D of the King County Surface Water Design Manual). For projects in Small Project Drainage Review, these measures may be used if no more than 1 acre of soil will be disturbed by the project. Other ESC measures may be allowed or required by DDES if these are inappropriate for the project or fail to contain sediment on the project site. A description of other measures and a more detailed description of those included here can be found in the ESC Standards. Projects that disturb 1 acre or more of soil will require an ESC plan developed by a civil engineer under a Targeted Drainage Review.

Intent of ESC Measures

The intent of ESC measures is to prevent, to the maximum extent practicable, the transport of sediment and other construction-related pollutants to streams, wetlands, lakes, drainage systems, and adjacent properties during and after construction. Erosion of disturbed areas on construction sites can result in excessive sediment transport to adjacent properties and to surface waters. This sediment can result in major adverse impacts, such as flooding due to obstructed drainage ways, smothering of salmonid spawning beds, creation of algal blooms in lakes, and violation of State water quality standards for turbidity. In addition to sediment, other construction-related pollutants can be generated by uncovered waste materials, stockpiles, and demolition debris; de-watering; maintenance and operation of heavy equipment; chemical spills; oil spills; placement of concrete; and application of fertilizers and pesticides. Such pollutants can be toxic to both fish and humans and may violate State water quality standards and the prohibited discharges section of KCC 9.12. Stabilization of the site after construction and prior to the wet season is also important to preventing these impacts.

Organization of Section C.3

This section is organized as follows:

- "Stabilized Construction Entrance," Section C.3.1 (p. C-84)
- "Mulching," Section C.3.2 (p. C-86)
- "Nets and Blankets," Section C.3.3 (p. C-88)
- "Plastic Covering," Section C.3.4 (p. C-90)
- "Mark Clearing Limits/Minimize Clearing," Section C.3.5 (p. C-91)
- "Silt Fence," Section C.3.6 (p. C-92)
- "Vegetated Strip," Section C.3.7 (p. C-94)
- "Triangular Silt Dike," Section C.3.8 (p. C-94)
- "Storm Drain Inlet Protection," Section C.3.9 (p. C-96)
- "Seeding," Section C.3.10 (p. C-101)
- "Sodding," Section C.3.11 (p. C-103)
- "Interceptor Dikes and Swales," Section C.3.12 (p. C-104)
- "Ditches," Section C.3.13 (p. C-106)
- "Dewatering Control," Section C.3.15 (p. C-109)
- "Control of Other Pollutants," Section C.3.16 (p. C-110)
The above measures must be implemented as needed to prevent the discharge of sediment-laden water from the construction site. Proposed measures must be shown on the small site ESC plan required to be submitted with the small project drainage plans. Site-specific conditions during construction may require additional measures as deemed necessary by DDES. As noted in Section C.3 above, other ESC measures found in Appendix D of the SWDM may be needed or may be more appropriate for the project site as determined by DDES.

C.3.1 STABILIZED CONSTRUCTION ENTRANCE

Purpose

Construction entrances are stabilized to reduce the amount of sediment transported onto paved roads by motor vehicles or runoff by constructing a stabilized pad of quarry spalls at the entrances to construction sites.

Application

Construction entrances shall be stabilized wherever traffic will be leaving a construction site and traveling on paved roads or other paved areas within 1,000 feet of the site.

Design and Installation Specifications

1. See Figure C.3.1.A for details.
2. A separation geotextile shall be placed under the spalls to prevent fine sediment from pumping up into the rock pad. The geotextile shall meet the following standards:

<table>
<thead>
<tr>
<th>Specification</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grab Tensile Strength (ASTM D4751)</td>
<td>200 psi min.</td>
</tr>
<tr>
<td>Grab Tensile Elongation (ASTM D4632)</td>
<td>30% max.</td>
</tr>
<tr>
<td>Mullen Burst Strength (ASTM D3786-80a)</td>
<td>400 psi min.</td>
</tr>
<tr>
<td>AOS (ASTM D4751)</td>
<td>20-45 (U.S. standard sieve size)</td>
</tr>
</tbody>
</table>

3. Hog fuel (wood based mulch) may be substituted for or combined with quarry spalls in areas that will not be used for permanent roads. The effectiveness of hog fuel is highly variable, but it has been used successfully on many construction sites. It generally requires more maintenance than quarry spalls. Hog fuel is not recommended for entrance stabilization in urban areas. The inspector may at any time require the use of quarry spalls if the hog fuel is not preventing sediment from being tracked onto pavement or if the hog fuel is being carried onto pavement. Hog fuel is prohibited in permanent roadbeds because organics in the subgrade soils cause difficulties with compaction.

4. Whenever possible, the entrance shall be constructed on a firm, compacted subgrade. This can substantially increase the effectiveness of the pad and reduce the need for maintenance.

Maintenance

1. Quarry spalls (or hog fuel) shall be added if the pad is no longer in accordance with the specifications.
2. If the entrance is not preventing sediment from being tracked onto pavement, then alternative measures to keep the streets free of sediment shall be used. This may include street sweeping, an increase in the dimensions of the entrance, or the installation of a wheel wash. If washing is used, it shall be done on an area covered with crushed rock, and wash water shall drain to a sediment trap or pond.
3. Any sediment that is tracked onto pavement shall be removed immediately by sweeping. The sediment collected by sweeping shall be removed or stabilized onsite. The pavement shall not be
cleaned by washing down the street, except when sweeping is ineffective and there is a threat to public safety. If it is necessary to wash the streets, a small sump must be constructed. The sediment would then be washed into the sump where it can be controlled. Wash water must be pumped back onto the site and can not discharge to systems tributary to surface waters.

4. Any quarry spalls that are loosened from the pad and end up on the roadway shall be removed immediately.

FIGURE C.3.1.A STABILIZED CONSTRUCTION ENTRANCE
C.3.2 MULCHING

Purpose
The purpose of mulching soils is to provide immediate temporary protection from erosion. Mulch also enhances plant establishment by conserving moisture, holding fertilizer, seed, and topsoil in place, and moderating soil temperatures. There is an enormous variety of mulches that may be used. Only the most common types are discussed in this section.

Conditions of Use
As a temporary cover measure, mulch should be used:
1. On disturbed areas that require cover measures for less than 30 days
2. As a cover for seed during the wet season and during the hot summer months
3. During the wet season on slopes steeper than 3H:1V with more than 10 feet of vertical relief.

Design and Installation Specifications
For mulch materials, application rates, and specifications, see Table C.3.2.A. Note: Thicknesses may be increased for disturbed areas in or near critical areas or other areas highly susceptible to erosion.

Maintenance Standards
1. The thickness of the mulch cover must be maintained.
2. Any areas that experience erosion shall be re-mulched and/or protected with a net or blanket. If the erosion problem is drainage related, then the drainage problem shall be assessed and alternate drainage such as interceptor swales may be needed to fix the problem and the eroded area re-mulched.
<table>
<thead>
<tr>
<th>Mulch Material</th>
<th>Quality Standards</th>
<th>Application Rates</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Straw</td>
<td>Air-dried; free from undesirable seed and coarse material</td>
<td>2"-3" thick; 2-3 bales per 1000 sf or 2-3 tons per acre</td>
<td>Cost-effective protection when applied with adequate thickness. Hand-application generally requires greater thickness than blown straw. Straw should be crimped to avoid wind blow. The thickness of straw may be reduced by half when used in conjunction with seeding.</td>
</tr>
<tr>
<td>Wood Fiber Cellulose</td>
<td>No growth inhibiting factors</td>
<td>Approx. 25-30 lbs per 1000 sf or 1000-1500 lbs per acre</td>
<td>Shall be applied with hydromulcher. Shall not be used without seed and tackifier unless the application rate is at least doubled. Some wood fiber with very long fibers can be effective at lower application rates and without seed or tackifier.</td>
</tr>
<tr>
<td>Compost</td>
<td>No visible water or dust during handling. Must be purchased from supplier with Solid Waste Handling Permit.</td>
<td>2" thick min.: approx. 100 tons per acre (approx. 800 lbs per cubic yard)</td>
<td>More effective control can be obtained by increasing thickness to 3". Excellent mulch for protecting final grades until landscaping because it can be directly seeded or tilled into soil as an amendment. Sources for compost are available from the King County Commission for Marketing Recyclable Materials at (206) 296-4439.</td>
</tr>
<tr>
<td>Hydraulic Matrices (Bonded Fiber Matrix)</td>
<td>This mulch category includes hydraulic slurries composed of wood fiber, paper fiber or a combination of the two held together by a binding system. The BFM shall be a mixture of long wood fibers and various bonding agents.</td>
<td>Apply at rates from 3,000 lbs per acre to 4,000 lbs per acre and based on manufacturers recommendations</td>
<td>The BFM shall not be applied immediately before, during or immediately after rainfall so that the matrix will have an opportunity to dry for 24 hours after installation. Application rates beyond 2,500 pounds may interfere with germination and are not usually recommended for turf establishment. BFM is generally a matrix where all fiber and binders are in one bag, rather than having to mix components from various manufacturers to create a matrix. BFMs can be installed via helicopter in remote areas. They are approximately $1,000 per acre cheaper to install.</td>
</tr>
<tr>
<td>Chipped Site Vegetation</td>
<td>Average size shall be several inches.</td>
<td>2" minimum thickness</td>
<td>This is a cost-effective way to dispose of debris from clearing and grubbing, and it eliminates the problems associated with burning. Generally, it should not be used on slopes above approx. 10% because of its tendency to be transported by runoff. It is not recommended within 200 feet of surface waters. If seeding is expected shortly after mulch, the decomposition of the chipped vegetation may tie up nutrients important to grass establishment.</td>
</tr>
</tbody>
</table>
C.3.3 NETS AND BLANKETS

Purpose
Erosion control nets and blankets are intended to prevent erosion and hold seed and mulch in place on steep slopes and in channels so that vegetation can become well established. In addition, some nets and blankets can be used to permanently reinforce turf to protect drainage ways during high flows. Nets are strands of material woven into an open, but high-tensile strength net (for example, jute matting). Blankets are strands of material that are not tightly woven, but instead form a layer of interlocking fibers, typically held together by a biodegradable or photodegradable netting (for example, excelsior or straw blankets). They generally have lower tensile strength than nets, but cover the ground more completely. Coir (coconut fiber) fabric comes as both nets and blankets.

Conditions of Use
Erosion control nets and blankets should be used:
1. For permanent stabilization of slopes 2H:1V or greater and with more than 10 feet of vertical relief.
2. In conjunction with seed for final stabilization of a slope, not for temporary cover. However, they may be used for temporary applications as long as the product is not damaged by repeated handling. In fact, this method of slope protection is superior to plastic sheeting, which generates high-velocity runoff.
3. For drainage ditches and swales (highly recommended). The application of appropriate netting or blanket to drainage ditches and swales can protect bare soil from channelized runoff while vegetation is established. Nets and blankets also can capture a great deal of sediment due to their open, porous structure. Synthetic nets and blankets may be used to permanently stabilize channels and may provide a cost-effective, environmentally preferable alternative to riprap.

Design and Installation Specifications
1. See Figure C.3.3.A and Figure C.3.3.B for typical orientation and installation of nettings and blankets. Note: Installation is critical to the effectiveness of these products. If good ground contact is not achieved, runoff can concentrate under the product, resulting in significant erosion.
2. Jute matting must be used in conjunction with mulch. Excelsior, woven straw blankets, and coir (coconut fiber) blankets may be installed without mulch. There are many other types of erosion control nets and blankets on the market that may be appropriate in certain circumstances. Other types of products will have to be evaluated individually. In general, most nets (e.g., jute matting) require mulch in order to prevent erosion because they have a fairly open structure. Blankets typically do not require mulch because they usually provide complete protection of the surface.
3. Purely synthetic blankets are allowed but shall only be used for long-term stabilization of waterways. The organic blankets authorized above are better for slope protection and short-term waterway protection because they retain moisture and provide organic matter to the soil, substantially improving the speed and success of re-vegetation.

Maintenance Standards
1. Good contact with the ground must be maintained, and there must not be erosion beneath the net or blanket.
2. Any areas of the net or blanket that are damaged or not in close contact with the ground shall be repaired and stapled.
3. If erosion occurs due to poorly controlled drainage, the problem shall be fixed and the eroded area protected.
FIGURE C.3.3.A WATERWAY INSTALLATION

DO NOT STRETCH BLANKETS/MATTINGS TIGHT - ALLOW THE ROLLS TO MOLD TO ANY IRREGULARITIES
SLOPE SURFACE SHALL BE SMOOTH BEFORE PLACEMENT FOR PROPER SOIL CONTACT
ANCHOR, STAPLE, AND INSTALL CHECK SLOTS AS PER MANUFACTURER'S RECOMMENDATIONS
AVOID JOINING MATERIAL IN THE CENTER OF THE DITCH
LIME, FERTILIZE AND SEED BEFORE INSTALLATION

FIGURE C.3.3.B SLOPE INSTALLATION

SLOPE SURFACE SHALL BE SMOOTH BEFORE PLACEMENT FOR PROPER SOIL CONTACT
STAPLING PATTERN AS PER MANUFACTURER'S RECOMMENDATIONS
MIN. 2" OVERLAP

IF THERE IS A BERM AT THE TOP OF SLOPE, ANCHOR UPSLOPE OF THE BERM
ANCHOR IN 6"x6" MIN. TRENCH AND STAPLE AT 12" INTERVALS
MIN. 6" OVERLAP

DO NOT STRETCH BLANKETS/MATTINGS TIGHT - ALLOW THE ROLLS TO MOLD TO ANY IRREGULARITIES
FOR SLOPES LESS THAN 3:1V, ROLLS MAY BE PLACED IN HORIZONTAL STRIPS

BRING MATERIAL DOWN TO A LEVEL AREA, TURN THE END UNDER 4" AND STAPLE AT 12" INTERVALS
LIME, FERTILIZE AND SEED BEFORE INSTALLATION, PLANTING OF SHRUBS, TREES, ETC. SHOULD OCCUR AFTER INSTALLATION.
PLASTIC COVERING

Purpose
Plastic covering provides immediate, short-term erosion protection to slopes and disturbed areas.

Conditions of Use
1. Plastic covering may be used on disturbed areas that require cover measures for less than 30 days.
2. Plastic is particularly useful for protecting cut and fill slopes and stockpiles. *Note: The relatively rapid breakdown of most polyethylene sheeting makes it unsuitable for long-term applications.*
3. Clear plastic sheeting may be used over newly-seeded areas to create a greenhouse effect and encourage grass growth. Clear plastic should not be used for this purpose during the summer months because the resulting high temperatures can kill the grass.
4. Due to rapid runoff caused by plastic sheeting, this method shall not be used upslope of areas that might be adversely impacted by concentrated runoff. Such areas include steep and/or unstable slopes.

Note: There have been many problems with plastic, usually attributable to poor installation and maintenance. However, the material itself can cause problems, even when correctly installed and maintained, because it generates high-velocity runoff and breaks down quickly due to ultraviolet radiation. In addition, if the plastic is not completely removed, it can clog drainage system inlets and outlets. It is highly recommended that alternatives to plastic sheeting be used whenever possible and that its use be limited.

Design and Installation Specifications
1. See Figure C.3.4.A for details.
2. Plastic sheeting shall have a minimum thickness of 0.06 millimeters.
3. If erosion at the toe of a slope is likely, a gravel berm, riprap, or other suitable protection shall be installed at the toe of the slope in order to reduce the velocity of runoff.

FIGURE C.3.4.A PLASTIC COVERING
Maintenance Standards for Plastic Covering
1. Torn sheets must be replaced and open seams repaired.
2. If the plastic begins to deteriorate due to ultraviolet radiation, it must be completely removed and replaced.

C.3.5 MARK CLEARING LIMITS/MINIMIZE CLEARING

Purpose
Minimizing clearing is the most effective method of erosion control. Undisturbed vegetation intercepts and slows rainwater. Plant roots hold soil in place, and dead vegetation on the ground acts as a mulch.

Applications
Clearing limits shall be marked and clearing minimized on any site where significant areas of undisturbed vegetation will be retained.

Design Specifications
1. Minimizing clearing should be incorporated into the site design. Clearing limits must be marked on the small site ESC plan.
2. On the ground, clearing limits must be clearly marked with brightly colored tape or plastic or metal safety fencing. If tape is used, it should be supported by vegetation or stakes, and should be about 3 to 6 feet high and highly visible. Equipment operators should be informed of areas of vegetation that are to be left undisturbed.
3. The duff layer, native top soil, and natural vegetation shall be retained in an undisturbed state to the maximum extent practicable. If it is not practicable to retain the duff layer in place, it should be stockpiled on-site, covered to prevent erosion, and replaced immediately upon completion of the ground disturbing activities.

Maintenance
Fencing shall be inspected regularly and repaired or replaced as needed.
C.3.6 SILT FENCE

Purpose
Use of a silt fence reduces the transport of coarse sediment from a construction site by providing a temporary physical barrier to sediment and reducing the runoff velocities of overland flow.

Conditions of Use
Silt fence may be used downslope of all disturbed areas. Silt fence is not intended to treat concentrated flows, nor is it intended to treat substantial amounts of overland flow.

Design and Installation Specifications
1. See Figure C.3.6.A and Figure C.3.6.B for details.
2. The geotextile used must meet the standards listed below. A copy of the manufacturer's fabric specifications must be available onsite.

<table>
<thead>
<tr>
<th>Specification</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOS (ASTM D4751)</td>
<td>30-100 sieve size (0.60-0.15 mm) for slit film</td>
</tr>
<tr>
<td></td>
<td>50-100 sieve size (0.30-0.15 mm) for other fabrics</td>
</tr>
<tr>
<td>Water Permittivity (ASTM D4491)</td>
<td>0.02 sec(^{-1}) minimum</td>
</tr>
<tr>
<td>Grab Tensile Strength (ASTM D4632)</td>
<td>180 lbs. min. for extra strength fabric</td>
</tr>
<tr>
<td></td>
<td>100 lbs. min. for standard strength fabric</td>
</tr>
<tr>
<td>Grab Tensile Elongation (ASTM D4632)</td>
<td>30% max.</td>
</tr>
<tr>
<td>Ultraviolet Resistance (ASTM D4355)</td>
<td>70% min.</td>
</tr>
</tbody>
</table>

3. Standard strength fabric requires wire backing to increase the strength of the fence. Wire backing or closer post spacing may be required for extra strength fabric if field performance warrants a stronger fence.

4. Where the fence is installed, the slope shall be no steeper than 2H:1V.

5. If a typical silt fence (per Figure C.3.6.A) is used, the standard 4 x 4 trench may not be reduced as long as the bottom 8 inches of the silt fence is well buried and secured in a trench that stabilizes the fence and does not allow water to bypass or undermine the silt fence.

6. Silt fences shall be located so as to avoid interfering with the movement of juvenile salmonids attempting to enter off-channel areas or drainages.

Maintenance Standards
1. Any damage shall be repaired immediately.
2. If concentrated flows are evident uphill of the fence, they must be intercepted and conveyed to a sediment trap or pond.

3. It is important to check the uphill side of the fence for signs of the fence clogging and acting as a barrier to flow and then causing channelization of flows parallel to the fence. If this occurs, replace the fence or remove the trapped sediment.

4. Sediment must be removed when the sediment is 6 inches high.

5. If the filter fabric (geotextile) has deteriorated due to ultraviolet breakdown, it shall be replaced.
FIGURE C.3.6.A SILT FENCE

Joints in filter fabric shall be spliced at posts, use staples, wire rings, or equivalent to attach fabric to posts.

2"x2" by 14 Ga. wire or equivalent, if standard 6' strength fabric used

FILTER FABRIC

Minimum 4"x4" trench

Backfill trench with native soil or 3/4"-1.5" washed gravel

2"x4" wood posts, steel fence posts, rebar, or equivalent

Post spacing may be increased to 8' if wire backing is used

NOTE: Filter fabric fences shall be installed along contour whenever possible

FIGURE C.3.6.B SILT FENCE INSTALLATION AND MAINTENANCE

Dig trench

Toe in fabric

Stake

Reinforce

Monitor

Maintain and clean
C.3.7 VEGETATED STRIP

Purpose
Vegetated strips reduce the transport of coarse sediment from a construction site by providing a temporary physical barrier to sediment and reducing the runoff velocities of overland flow.

Conditions of Use
Vegetated strips may be used downslope of all disturbed areas. Vegetated strips are not intended to treat concentrated flows, nor are they intended to treat substantial amounts of overland flow.

Design and Installation Specifications
1. The vegetated strip shall consist of a 25-foot minimum width continuous strip of dense vegetation with a permeable topsoil. Grass-covered, landscaped areas are generally not adequate because the volume of sediment overwhelms the grass. Ideally, vegetated strips shall consist of undisturbed native growth with a well-developed soil that allows for infiltration of runoff.
2. The slope within the strip shall not exceed 4H:1V.
3. The uphill boundary of the vegetated strip shall be delineated with clearing limits as specified in Section C.1.1 (p. C-91).

Maintenance Standards
1. Any areas damaged by erosion or construction activity shall be seeded immediately and protected by mulch.
2. If more than 5 feet of the original vegetated strip width has had vegetation removed or is being eroded, sod must be installed.

C.3.8 TRIANGULAR SILT DIKE

Purpose
Triangular silt dikes (TSDs) may be used as check dams, for perimeter protection, for temporary soil stockpile protection, for drop inlet protection, or as a temporary interceptor dike. Silt dikes, if attached to impervious surfaces with tack or other adhesive agent may also be used as temporary wheel wash areas, or concrete washout collection areas.

Conditions of Use
1. May be used for temporary check dams in ditches.
2. May be used on soil or pavement with adhesive or staples.
3. TSDs have been used to build temporary sediment ponds, diversion ditches, concrete washout facilities, curbing, water bars, level spreaders, and berms.

Design and Installation Specifications
1. TSDs must be made of urethane foam sewn into a woven geosynthetic fabric.
2. TSDs are triangular, 10 inches to 14 inches high in the center, with a 20-inch to 28-inch base. A 2-foot apron extends beyond both sides of the triangle along its standard section of 7 feet. A sleeve at one end allows attachment of additional sections as needed.
3. Install TSDs with ends curved up to prevent water from flowing around the ends
4. Attach the TSDs and their fabric flaps to the ground with wire staples. Wire staples must be No. 11
gauge wire or stronger and shall be 200 mm to 300 mm in length.
5. When multiple units are installed, the sleeve of fabric at the end of the unit shall overlap the abutting
unit and be stapled.
6. TSDs must be located and installed as soon as construction will allow.
7. TSDs must be placed perpendicular to the flow of water.
8. When used as check dams, the leading edge must be secured with rocks, sandbags, or a small key slot
and staples.
9. When used in grass-lined ditches and swales, the TSD check dams and accumulated sediment shall be
removed when the grass has matured sufficiently to protect the ditch or swale unless the slope of the
swale is greater than 4 percent. The area beneath the TSD check dams shall be seeded and mulched
immediately after dam removal.

Maintenance Standards

1. Triangular silt dikes shall be monitored for performance and sediment accumulation during and after
each runoff producing rainfall event. Sediment shall be removed when it reaches one half the height
of the silt dike.
2. Anticipate submergence and deposition above the triangular silt dike and erosion from high flows
around the edges of the dike/dam. Immediately repair any damage or any undercutting of the dike/dam.
C.3.9 STORM DRAIN INLET PROTECTION

Purpose
Storm drain inlets are protected to prevent coarse sediment from entering storm drainage systems. Temporary devices around storm drains assist in improving the quality of water discharged to inlets or catch basins by ponding sediment-laden water. These devices are effective only for relatively small drainage areas.

Conditions of Use
1. Protection shall be provided for all storm drain inlets downslope and within 500 feet of a disturbed or construction area, unless the runoff that enters the catch basin will be conveyed to a sediment pond or trap.
2. Inlet protection may be used anywhere at the applicant's discretion to protect the drainage system. This will, however, require more maintenance, and it is highly likely that the drainage system will still require some cleaning.
3. The contributing drainage area must not be larger than one acre.

Design and Installation Specifications
1. There are many options for protecting storm drain inlets. Two commonly used options are filter fabric protection and catch basin inserts. Filter fabric protection (see Figure C.3.9.A) is filter fabric (geotextile) placed over the grate. This method is generally very ineffective and requires intense maintenance efforts. Catch basin inserts (see Figure C.3.9.B) are manufactured devices that nest inside a catch basin. This method also requires a high frequency of maintenance to be effective. Both options provide adequate protection, but filter fabric is likely to result in ponding of water above the catch basin, while the insert will not. Thus, filter fabric is only allowed where ponding will not be a traffic concern and where slope erosion will not result if the curb is overtopped by ponded water. Trapping sediment in the catch basins is unlikely to improve the water quality of runoff if it is treated in a pond or trap because the coarse particles that are trapped at the catch basin settle out very quickly in the pond or trap. Catch basin protection normally only improves water quality where there is no treatment facility downstream. In these circumstances, catch basin protection is an important last line of defense. It is not, however, a substitute for preventing erosion.

The placement of filter fabric under grates is generally prohibited and the use of filter fabric over grates is strictly limited and discouraged.

2. It is sometimes possible to construct a small sump around the catch basin before final surfacing of the road. This is allowed because it can be a very effective method of sediment control.

3. Block and gravel filters, gravel and wire mesh filter barriers, and bag barriers filled with various filtering media placed around catch basins can be effective when the drainage area is 1 acre or less and flows do not exceed 0.5 cfs. It is necessary to allow for overtopping to prevent flooding. Many manufacturers have various inlet protection filters that are very effective in keeping sediment-laden water from entering the storm drainage system. The following are examples of a few common methods.

a) Block and gravel filters (Figure C.3.9.C) are a barrier formed around an inlet with standard concrete block and gravel, installed as follows:
 • Height is 1 to 2 feet above the inlet.
 • Recess the first row of blocks 2 inches into the ground for stability.
 • Support subsequent rows by placing a 2x4 through the concrete block opening.
C.3.9 STORM DRAIN INLET PROTECTION

- Do not use mortar.
- Lay some blocks in the bottom row on their side for dewatering the pooled water.
- Place cloth or mesh with ½ inch openings over all block openings.
- Place gravel below the top of blocks on slopes of 2:1 or flatter.
- An alternate design is a gravel donut.

b) **Gravel and wire mesh filters** consist of a gravel barrier placed over the top of an inlet. This structure generally does not provide overflow. Install as follows:
 - Cloth or comparable wire mesh with ½ inch openings is placed over inlet.
 - Coarse aggregate covers the cloth or mesh.
 - Height/depth of gravel should be 1 foot or more, 18 inches wider than inlet on all sides.

c) **Curb inlet protection with a wooden weir** is a barrier formed around an inlet with a wooden frame and gravel, installed as follows:
 - Construct a frame and attach wire mesh (½ inch openings) and filter fabric to the frame.
 - Pile coarse washed aggregate against the wire/fabric.
 - Place weight on frame anchors.

d) **Curb and gutter sediment barriers** (Figure C.3.9.D) consist of sandbags or rock berms (riprap and aggregate) 3 feet high and 3 feet wide in a horseshoe shape, installed as follows:
 - Bags of either burlap or woven geotextile fabric, filled with a variety of media such as gravel, wood chips, compost or sand stacked tightly allows water to pond and allows sediment to separate from runoff.
 - Leave a "one bag gap" in the top row of the barrier to provide a spillway for overflow.
 - Construct a horseshoe shaped berm, faced with coarse aggregate if using riprap, 3 x 3 and at least 2 feet from the inlet.
 - Construct a horseshoe shaped sedimentation trap on the outside of the berm to sediment trap standards for protecting a culvert inlet.

4. **Excavated drop inlet sediment traps** are appropriate where relatively heavy flows are expected and overflow capability is needed. If emergency overflow is provided, additional end-of-pipe treatment may be required. Excavated drop inlets consist of an excavated impoundment area around a storm drain. Sediment settles out of the stormwater prior to enter the drain. Install according to the following specifications:
 a) The impoundment area should have a depth of 1 - 2 feet measured from the crest of the inlet structure.
 b) Side slopes of the excavated area must be no steeper than 2:1.
 c) Minimum volume of the excavated area should be 35 cubic yards.
 d) Install provisions for draining the area to prevent standing water problems.
 e) Keep the area clear of debris.
 f) Weep holes may be drilled into the side of the inlet.
 g) Protect weep holes with wire mesh and washed aggregate.
 h) Weep holes must be sealed when removing and stabilizing excavated area.
 i) A temporary dike may be necessary on the down slope side of the structure to prevent bypass flow.
Maintenance Standards

1. Any accumulated sediment on or around inlet protection shall be removed immediately. Sediment shall not be removed with water, and all sediment must be disposed of as fill on site or hauled off site.

2. Any sediment in the catch basin insert shall be removed when the sediment has filled one-third of the available storage. The filter media for the insert shall be cleaned or replaced at least monthly.

3. Regular maintenance is critical for all forms of catch basin/inlet protection. Unlike many forms of protection that fail gradually, catch basin protection will fail suddenly and completely if not maintained properly.

FIGURE C.3.9.A FILTER FABRIC PROTECTION

FIGURE C.3.9.B CATCH BASIN INSERT
FIGURE C.3.9.C BLOCK AND GRAVEL CURB INLET PROTECTION

NOTES:
1. USE BLOCK AND GRAVEL TYPE SEDIMENT BARRIER WHEN CURB INLET IS LOCATED IN GENTLY SLOPING SEGMENT, WHERE WATER CAN POND AND ALLOW SEDIMENT TO SEPARATE FROM RUNOFF.

2. BARRIER SHALL ALLOW FOR OVERFLOW FROM SEVERE STORM EVENT.

3. INSPECT BARRIERS AND REMOVE SEDIMENT AFTER EACH STORM EVENT. SEDIMENT AND GRAVEL MUST BE REMOVED FROM THE TRAVELED WAY IMMEDIATELY.

BLOCK AND GRAVEL CURB INLET PROTECTION
FIGURE C.3.9.D CURB AND GUTTER BARRIER PROTECTION

NOTES:
1. PLACE CURB TYPE SEDIMENT BARRIERS ON GENTLY SLOPING STREET SEGMENTS, WHERE WATER CAN POND AND ALLOW SEDIMENT TO SEPARATE FROM RUNOFF.

2. SANDBAGS OF EITHER BURLAP OR WOVEN GEOTEXTILE FABRIC, ARE FILLED WITH GRAVEL, LAYERED AND PACKED TIGHTLY.

3. LEAVE A ONE SANDBAG GAP IN THE TOP ROW TO PROVIDE A SPILLWAY FOR OVERFLOW.

4. INSPECT BARRIERS AND REMOVE SEDIMENT AFTER EACH STORM EVENT. SEDIMENT AND GRAVEL MUST BE REMOVED FROM THE TRAVELED WAY IMMEDIATELY.

CURB AND GUTTER BARRIER
C.3.10 SEEDING

Purpose
Seeding is intended to reduce erosion by stabilizing exposed soils. A well-established vegetative cover is one of the most effective methods of reducing erosion.

Conditions of Use
1. Seeding shall be used throughout the project on disturbed areas that have reached final grade or that will remain unworked for more than 30 days.
2. At the County’s discretion, seeding without mulch during the dry season is allowed even though it will take more than seven days to develop an effective cover. Mulch is, however, recommended at all times because it protects seeds from heat, moisture loss, and transport due to runoff.
3. At final site stabilization, all disturbed areas not otherwise vegetated or stabilized shall be seeded and mulched.

Design and Installation Specifications
1. The best time to seed is April 1 through June 30, and September 1 through October 15. Areas may be seeded between July 1 and August 31, but irrigation may be required in order to grow adequate cover. Areas may also be seeded during the winter months, but it may take several months to develop a dense groundcover due to cold temperatures. The application and maintenance of mulch is critical for winter seeding.
2. To prevent seed from being washed away, confirm that all required surface water control measures have been installed.
3. The seedbed should be firm but not compacted because soils that are well compacted will not vegetate as quickly or thoroughly.
4. In general, 10-20-20 N-P-K (nitrogen-phosphorus-potassium) fertilizer may be used at a rate of 90 pounds per acre. Slow-release fertilizers are preferred because they are more efficient and have fewer environmental impacts. It is recommended that areas being seeded for final landscaping conduct soil tests to determine the exact type and quantity of fertilizer needed. This will prevent the over-application of fertilizer. Disturbed areas within 200 feet of water bodies and wetlands must use slow-release low-phosphorus fertilizer (typical proportions 3-1-2 N-P-K).
5. The following requirements apply to mulching:
 a) Mulch is always required for seeding slopes greater than 3H:1V (see Section D.4.2.1).
 b) If seeding during the wet season, mulch is required.
 c) The use of mulch may be required during the dry season at the County’s discretion if grass growth is expected to be slow, the soils are highly erodible due to soil type or gradient, there is a water body close to the disturbed area, or significant precipitation is anticipated before the grass will provide effective cover.
 d) Mulch may be applied on top of the seed or simultaneously by hydroseeding.
6. Hydroseeding is allowed as long as tackifier is included. Hydroseeding with wood fiber mulch is adequate during the dry season. During the wet season, the application rate shall be doubled because the mulch and tackifier used in hydroseeding break down fairly rapidly. It may be necessary in some applications to include straw with the wood fiber, but this can be detrimental to germination.
7. Areas to be permanently landscaped shall use soil amendments. Good quality topsoil shall be tilled into the top six inches to reduce the need for fertilizer and improve the overall soil quality. Most native soils will require the addition of four inches of well-rotted compost to be tilled into the soil to
provide a good quality topsoil. Compost used should meet Ecology publication 98-38 specifications for Grade A quality compost.

8. The seed mixes listed below include recommended mixes for both temporary and permanent seeding. These mixes, with the exception of the wetland mix, shall be applied at a rate of 120 pounds per acre. This rate may be reduced if soil amendments or slow-release fertilizers are used. Local suppliers should be consulted for their recommendations because the appropriate mix depends on a variety of factors, including exposure, soil type, slope, and expected foot traffic. Alternative seed mixes approved by the County may be used.

<table>
<thead>
<tr>
<th>TABLE C.3.10.A TEMPORARY EROSION CONTROL SEED MIX</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Weight</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>Chewings or red fescue (Festuca rubra var. commutata or Festuca rubra)</td>
</tr>
<tr>
<td>Annual or perennial rye (Lolium multiflorum or Lolium perenne)</td>
</tr>
<tr>
<td>Redtop or colonial bentgrass (Agrostis alba or Agrostis tenuis)</td>
</tr>
<tr>
<td>White dutch clover (Trifolium repens)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TABLE C.3.10.B LANDSCAPING SEED MIX</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Weight</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>Perennial rye blend (Lolium perenne)</td>
</tr>
<tr>
<td>Chewings and red fescue blend (Festuca rubra var. commutata or Festuca rubra)</td>
</tr>
</tbody>
</table>

Maintenance Standards for Seeding

1. Any seeded areas that fail to establish at least 80 percent cover within one month shall be reseeded. If reseeding is ineffective, an alternate method, such as sodding or nets/blankets, shall be used. If winter weather prevents adequate grass growth, this time limit may be relaxed at the discretion of the County when critical areas would otherwise be protected.

2. After adequate cover is achieved, any areas that experience erosion shall be re-seeded and protected by mulch. If the erosion problem is drainage related, the problem shall be fixed and the eroded area re-seeded and protected by mulch.

3. Seeded areas shall be supplied with adequate moisture, but not watered to the extent that it causes runoff.
C.3.11 SODDING

Purpose
The purpose of sodding is to establish permanent turf for immediate erosion protection and to stabilize drainage ways where concentrated overland flow will occur.

Conditions of Use
Sodding may be used in the following areas:
1. Disturbed areas that require short-term or long-term cover
2. Disturbed areas that require immediate vegetative cover

Design and Installation Specifications
Sod shall be free of weeds, of uniform thickness (approximately 1-inch thick), and shall have a dense root mat for mechanical strength.

The following steps are recommended for sod installation:
1. Shape and smooth the surface to final grade in accordance with the approved grading plan.
2. Amend two inches (minimum) of well-rotted compost into the top six inches of the soil if the organic content of the soil is less than ten percent. Compost used should meet Ecology publication 98-38 specifications for Grade A quality compost.
3. Fertilize according to the supplier's recommendations. Disturbed areas within 200 feet of water bodies and wetlands must use non-phosphorus fertilizer.
4. Work lime and fertilizer 1 to 2 inches into the soil, and smooth the surface.
5. Lay strips of sod beginning at the lowest area to be sodded and perpendicular to the direction of water flow. Wedge strips securely into place. Square the ends of each strip to provide for a close, tight fit. Stagger joints at least 12 inches. Staple on slopes steeper than 3H:1V.
6. Roll the sodded area and irrigate.
7. When sodding is carried out in alternating strips or other patterns, seed the areas between the sod immediately after sodding.

Maintenance Standards
If the grass is unhealthy, the cause shall be determined and appropriate action taken to reestablish a healthy groundcover. If it is impossible to establish a healthy groundcover due to frequent saturation, instability, or some other cause, the sod shall be removed, the area seeded with an appropriate mix, and protected with a net or blanket.
C.3.12 INTERCEPTOR DIKES AND SWALES

Purpose
Interceptor dikes and swales intercept storm runoff from drainage areas on or above disturbed slopes and convey it to a sediment pond or trap. They may also be used to intercept runoff from undisturbed areas and convey the runoff to a point below any exposed soils. Interception of surface water reduces the possibility of slope erosion.

Conditions of Use
Interceptor dikes and swales are required in the following situations:
1. At the top of all slopes in excess of 3H:1V and with more than 20 feet of vertical relief.
2. At intervals on any slope that exceeds the dimensions specified in this section for the horizontal spacing of dikes and swales.

Design and Installation Specifications
1. See Figure C.3.12.A for details of an interceptor dike and Figure C.3.12.B for an interceptor swale.
2. Interceptor dikes and swales shall be spaced horizontally as follows:

<table>
<thead>
<tr>
<th>Average Slope</th>
<th>Slope Percent</th>
<th>Flowpath Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>20H:1V or less</td>
<td>3-5%</td>
<td>300 feet</td>
</tr>
<tr>
<td>(10 to 20)H:1V</td>
<td>5-10%</td>
<td>200 feet</td>
</tr>
<tr>
<td>(4 to 10)H:1V</td>
<td>10-25%</td>
<td>100 feet</td>
</tr>
<tr>
<td>(2 to 4)H:1V</td>
<td>25-50%</td>
<td>50 feet</td>
</tr>
</tbody>
</table>
3. For slopes steeper than 2H:1V with more than 10 feet of vertical relief, benches may be constructed or closer spaced interceptor dikes or swales may be used. Whichever measure is chosen, the spacing and capacity of the measures must be designed by the engineer and the design must include provisions for effectively intercepting the high velocity runoff associated with steep slopes.
4. If the dike or swale intercepts runoff from disturbed areas, it shall discharge to a stable conveyance system that routes the runoff to a sediment pond or trap. If the dike or swale intercepts runoff that originates from undisturbed areas, it shall discharge to a stable conveyance system that routes the runoff downslope of any disturbed areas and releases the water at a stabilized outlet.

Maintenance Standards
1. Damage resulting from runoff or construction activity shall be repaired immediately.
2. If the facilities do not regularly retain storm runoff, the capacity and/or frequency of the dikes/swales shall be increased.
FIGURE C.3.12.A INTERCEPTOR DIKE

FIGURE C.3.12.B INTERCEPTOR SWALE
C.3.13 DITCHES

Purpose
Ditches intercept and convey runoff from disturbed areas to sediment control locations. They also convey runoff intercepted from undisturbed areas around the construction site to a non-erosive discharge point.

Conditions of Use
Ditches may be used anywhere that concentrated runoff is to be conveyed on or around the construction site. Temporary pipe systems may also be used to convey runoff.

Design and Installation Specifications
1. Up to 30,000 square feet may be drained by a 12-inch deep trapezoidal ditch with a 1-foot bottom width. Up to 2 acres may be drained by an 18-inch deep trapezoidal ditch with a 1-foot bottom width. Ditches draining larger areas will need to be sized by a civil engineer.
2. Ditch side slopes shall be no steeper than 2H:1V.
3. Ditches on 5% or steeper grades shall be armored with rip rap or contain crushed rock check dams spaced such that the crest of each dam is even with the toe of the next upstream dam. See Figure C.3.13.A for details on check dam installation.

Maintenance Standards
1. Any sediment deposition of more than 0.5 feet shall be removed so that the channel is restored to its design capacity.
2. If the channel capacity is insufficient for the design flow, it must be determined whether the problem is local (e.g., a constriction or bend) or the channel is under-designed. If the problem is local, the channel capacity must be increased through construction of a berm(s) or by excavation. If the problem is under-design, the design engineer shall be notified and the channel redesigned to a more conservative standard to be approved by King County.
3. The channel shall be examined for signs of scouring and erosion of the bed and banks. If scouring or erosion has occurred, affected areas shall be protected by riprap or an erosion control blanket or net.
FIGURE C.3.13.A CHECK DAMS

CROSS SECTION

CHECK DAM SPACING

L = THE DISTANCE SUCH THAT POINTS A AND B ARE OF EQUAL ELEVATION

2:1 SLOPES

2"-4" ROCK

6" MIN

24" MIN.
SECTION C.3 EROSION AND SEDIMENT CONTROL (ESC) MEASURES

C.3.14 PIPE SLOPE DRAIN

Purpose
Pipe slope drains are designed to carry concentrated runoff down steep slopes without causing erosion, or saturation of slide-prone soils. Pipe slope drains may be used to divert water away from or over bare soil to prevent gullies, channel erosion, and saturation of slide prone soils.

Conditions of Use
Pipe slope drains should be used when a temporary or permanent stormwater conveyance is needed to move water down a steep slope to avoid erosion. Pipe slope drains may be:

1. Used on any slope with a gradient of 2H:1V or greater and with at least 10 feet of vertical relief.
2. Used to drain water collected from aquifers exposed on cut slopes and convey it to the base of the slope.
3. Used to collect clean runoff from plastic sheet cover and direct away from any exposed soils.
4. Installed in conjunction with silt fence to drain collected water to a controlled area.

Design and Installation Specifications

1. See Figure C.3.14.A for details.
2. Up to 30,000 square feet may be drained by each 6-inch minimum diameter pipe. Up to 2 acres may be drained by each 12-inch minimum diameter pipe.
3. The maximum drainage area allowed for any 12-inch pipe is 2 acres. For larger areas, more than one pipe shall be used.
4. The soil around and under the pipe and entrance section shall be thoroughly compacted.
5. The flared inlet section shall be securely connected to the slope drain and be fused or welded, or have flange-bolted mechanical joints to ensure a watertight seal. Ensure that the entrance area is stable and large enough to direct flow into the pipe.
6. Slope drains shall be continuously fused, welded, or flange-bolted mechanical joint pipe systems with proper anchoring to the soil.
7. Re-establish cover immediately on areas disturbed by the installation.

Maintenance Standards

1. The inlet shall not be undercut or bypassed by water. If there are problems, the head wall shall be appropriately reinforced.
2. No erosion shall occur at the outlet point. If erosion occurs, additional protection shall be added.
C.3.15 DEWATERING CONTROL

Purpose

To prevent the untreated discharge of sediment-laden water from dewatering of utility trenches, excavated areas, foundations, etc.

Conditions of Use

Dewatering control measures shall be used whenever there is a potential for runoff from dewatering of utility trenches, excavations, foundations, etc.

Design Specifications

1. Foundation, vault, excavation, and trench dewatering water that has similar characteristics to stormwater runoff at the site shall be discharged into a controlled conveyance system prior to discharge to a sediment trap or sediment pond. Foundation and trench dewatering water, which has similar characteristics to stormwater runoff at the site, must be disposed of through one of the following options depending on site constraints:
 a) Infiltration,
 b) Transport offsite in a vehicle, such as a vacuum flush truck, for legal disposal in a manner that does not pollute surface waters,
 c) Discharge to the sanitary sewer discharge with local sewer district approval if there is no other option, or
 d) Use of a sedimentation bag with outfall to a ditch or swale for small volumes of localized dewatering.

2. Clean, non-turbid dewatering water, such as well-point ground water, may be discharged via stable conveyance to systems tributary to surface waters, provided the dewatering flow does not cause erosion or flooding of receiving waters.

3. Highly turbid or contaminated dewatering water shall be handled separately from stormwater.
C.3.16 CONTROL OF OTHER POLLUTANTS

Purpose
To prevent the discharge of pollutants resulting from construction activities.

Application
Pollution control measures shall be used whenever there is a potential for the discharge to ground or surface water of any pollutants used on the site.

Pollution Control Measures
The following pollution control measures shall be implemented as applicable using activity-specific BMPs detailed in the King County *Stormwater Pollution Prevention Manual (SPPM)*:

2. Cover, containment, and protection from vandalism shall be provided for all chemicals, liquid products, petroleum products, and non-inert wastes present on the site (see Chapter 173-304 WAC for the definition of inert waste). Onsite fueling tanks shall include secondary containment. See *SPPM* Activity Sheets A-2, A-3, A-4, A-6, A-8, and A-9.

3. Maintenance and repair of heavy equipment and vehicles involving oil changes, hydraulic system drain down, solvent and de-greasing cleaning operations, fuel tank drain down and removal, and other activities which may result in discharge or spillage of pollutants to the ground or into stormwater runoff must be conducted using spill prevention measures, such as drip pans. Contaminated surfaces shall be cleaned immediately following any discharge or spill incident. Emergency repairs may be performed onsite using temporary plastic placed beneath and, if raining, over the vehicle. See *SPPM* Activity Sheets A-13, A-17, and A-18.

4. Application of agricultural chemicals, including fertilizers and pesticides, shall be conducted in a manner and at application rates that will not result in loss of chemical to stormwater runoff. Manufacturers’ recommendations for application rates and procedures shall be followed. See *SPPM* Activity Sheets A-5, A-25, and A-26.

5. Measures shall be used to prevent or treat contamination of stormwater runoff by pH modifying sources. These sources include, but are not limited to, bulk cement, cement kiln dust, fly ash, new concrete washing and curing waters, waste streams generated from concrete grinding and sawing, exposed aggregate processes, and concrete pumping and mixer washout waters. Stormwater discharges shall not cause or contribute to a violation of the water quality standard for pH in the receiving water. See *SPPM* Activity Sheets A-19, A-20, A-29, A-43, and A-44.
C.4 SMALL PROJECT DRAINAGE PLAN SPECIFICATIONS

This section presents the specifications of drainage plans and supporting documentation that must be submitted for projects in Small Project Drainage Review. See Section C.1.5 (p. C-23) for a complete list of items that must be submitted. See Reference Section C.5.1 (p. C-121) for a description of the Small Project Drainage Review Process.

Organization of Section C.4

This section is organized as follows:

- Section C.4.1, "Components of Small Project Drainage Plans" (p. C-111)
- Section C.4.2, "Specifications for Site Plans" (p. C-113)
- Section C.4.3, "BMP Design and Maintenance Details" (p. C-117)
- Section C.4.4, "Written Drainage Assessment" (p. C-118)

C.4.1 COMPONENTS OF SMALL PROJECT DRAINAGE PLANS

Unless otherwise directed by DDES, small project drainage plans for projects on individual sites/lots typically include a flow control BMP site plan, flow control BMP design and maintenance details, a small site ESC plan, and a written drainage assessment as described and illustrated in this section. If the project is a subdivision, a site improvement plan is typically required, but if flow control BMPs are proposed to be installed by the subdivision project on the individual lots, a flow control BMP site plan may substitute for the site improvement plan as allowed by DDES. This should be determined in a preapplication meeting with DDES.

Note, if there are any site conditions or drainage issues that must be addressed by a civil engineer as determined by DDES, an engineering plan as described in Chapter 2 of the SWDM will be required in addition to the Small Project Drainage Plan.

C.4.1.1 COMPONENTS REQUIRED FOR INDIVIDUAL LOT PROJECTS

Most of the information required for the small project drainage plan is also required for a residential site plan, which must be submitted with the permit application (see DDES Bulletin No. 9, "Obtaining a Residential Building Permit"). In fact, the residential site plan may be used as a base map for the flow control BMP site plan and small site ESC plan components of the small project drainage plan.

Required components for all individual lot projects are as follows:

1. **Flow Control BMP Site Plan.** This is a scale drawing of the individual site/lot used to show how required flow control BMPs will be applied to the target impervious surface and new pervious surface proposed on the site/lot. The flow control BMP (FCBMP) site plan is intended to be a recordable document (or reducible to a recordable document) that can be attached to the declaration of covenant and grant of easement required for implementation of flow control BMPs on individual sites/lots. DDES may allow a written version of this plan if they determine there is no need to illustrate the size and location of proposed flow control BMPs.

2. **Flow Control BMP Design and Maintenance Details** (required whenever flow control BMPs are proposed by a project). These are diagrams/figures, design specifications, and maintenance instructions for each flow control BMP proposed. FCBMP design and maintenance details are intended to be recordable to facilitate attachment to the declaration of covenant and grant of easement required for implementation of flow control BMPs on individual sites/lots. DDES may waive all or a
portion of this component if they determine there is no need to specify design details or maintenance instructions for certain proposed BMPs (e.g., the reduced footprint BMP).

3. **Small Site ESC Plan.** This is a scale drawing of the site or project site used to show the limits of disturbance by the project and how required ESC measures will be applied to prevent sediment from leaving the project site. The plan must include or be accompanied by any necessary standard details for installation of proposed ESC measures. The figures in Section C.3 may be used as details. DDES may allow a written version of this plan if they determine there is no need to illustrate the extent and location of proposed ESC measures. *Note: if the project proposes to disturb 1 or more acre, an ESC plan prepared by a civil engineer will be required in accordance with the County's ESC Standards (Appendix D of the SWDM).*

4. **Written Drainage Assessment.** This is an overview of the proposed project and its compliance with the drainage requirements of this appendix. It includes a description of proposed site improvements, existing site conditions, critical areas, existing drainage features, and proposed flow control BMPs and ESC measures, including how they were selected and sized. The drainage assessment should also discuss the results and implications of any soils reports or special studies completed for the site.

C.4.1.2 COMPONENTS REQUIRED FOR SUBDIVISION PROJECTS

The components required for a subdivision project depend on whether flow control BMPs are proposed to be installed as part of the project as described below.

A. NO FLOW CONTROL BMPS PROPOSED

1. **Site Improvement Plan.** This is a scale drawing of the site used to show the proposed lot layout, building restrictions, road and drainage improvements, and any measures necessary to mitigate the stormwater impacts of road improvements.

2. **Small Site ESC Plan.** Same as for individual lot projects in Section C.4.1.1.

3. **Written Drainage Assessment.** Same as for individual lot projects in Section C.4.1.1.

B. FLOW CONTROL BMPS PROPOSED

1. **Flow Control BMP Site Plan** (required for each lot). This is a scale drawing of each lot used to show how required flow control BMPs will be applied to the future anticipated target impervious surface and new pervious surface on the site/lot. All other aspects of this plan are the same as for individual lot projects in Section C.4.1.1.

2. **Flow Control BMP Design and Maintenance Details** (required for each lot). Same as for individual lot projects in Section C.4.1.1.

3. **Site Improvement Plan.** May be waived by DDES if they determine the FCBMP site plan and design details are an adequate substitute or if no road or drainage improvements are proposed.

4. **Small Site ESC Plan.** Same as for individual lot projects in Section C.4.1.1.

5. **Written Drainage Assessment.** Same as for individual lot projects in Section C.4.1.1.

18 If engineering plans are required, the information requested in the written drainage assessment should be incorporated in the technical information report.
C.4.2 SPECIFICATIONS FOR SITE PLANS

FCBMP site plans, subdivision site improvement plans, and small site ESC plans are drawings of the entire site that contains the project. They should be drawn on 8½" x 11", 8½" x 14", or 11" x 17" paper, although the applicant is advised to draw FCBMP site plans on 8½" x 11" or 8½" x 14" paper with 1-inch margins so they can be directly recorded as attachments to the required declaration of covenant and grant of easement per Requirement 3 of Section C.1.3.3 (p. C-18).

Site plans for projects in Small Project Drainage Review must include the information specified in the following subsections.

C.4.2.1 GENERAL INFORMATION

The following information must be included on all FCBMP site plans, subdivision site improvement plans, and small site ESC plans, unless otherwise directed by DDES:

Identification
- Name, address, and phone number of applicant
- Parcel number
- Dimension of all property lines, easements, and building setback lines
- Street names and existing or proposed property address
- Section, township, and range of proposal.
- North arrow
- Legend if needed
- **Scale**—use a scale that clearly illustrates drainage features and BMPs/measures (1"=20' is standard scale; minimum acceptable scale is 1"=50'). If necessary, split the site plan into two or more plan sheets and indicate a "match line" on each sheet to show how the sheets splice together. A variation of this approach is to use separate scales for the project site versus the entire site and draw them on separate plan sheets.

Building and Site Development Features
- Footprint of all structures (existing and proposed)
- Parking, roads, and driveways (existing and proposed)
- Sport courts and any other paved or impervious surfaces (existing and proposed)
- Pervious surface land cover (existing and proposed)
- Location of any retaining walls and rockeries (existing and proposed)
- Existing or proposed septic system, including all system components and both primary and reserve drainfields
- Utility structures (poles, fire hydrants, etc.)
- Existing wells or wells to be abandoned.

Topography
- Corner elevations of the site/lot
- Benchmark (a permanent mark indicating elevation and serving as a reference in the topographic survey)
SECTION C.4 SMALL PROJECT DRAINAGE PLAN SPECIFICATIONS

- Datum [assumed datum is acceptable in many cases (i.e., fire hydrant base = 100'); datum for projects in or near FEMA floodplain should be NGVD 1929]
- Show 5-foot contours for all slopes steeper than 15% and delineate the top and bottom of these slopes
- For sites/lots that are 22,000 square feet and larger, show 2-foot or 5-foot contours as needed to design and demonstrate compliance with the minimum requirements and specifications for proposed flow control BMPs and ESC measures.

Drainage Features and Critical Areas
- Location of all existing and proposed ditches, swales, pipes, etc.
- Delineation of all streams, wetlands, lakes, closed depressions, or other water features (including any required buffer widths)
- Delineation of all flood hazard areas, erosion hazard areas, steep slope hazard areas, landslide hazard areas, and their buffers and building setback lines
- Delineation of all drainage easements, tracts, and right-of-way
- Delineation of all critical areas as shown on any recorded critical areas notice on title.

C.4.2.2 INFORMATION SPECIFIC TO FLOW CONTROL BMPS

In addition to the general information required in Section C.4.2.1, the following additional information is required on FCBMP site plans and on subdivision site improvement plans that include installation of flow control BMPs within a dedicated tract or road right-of-way:
- Location and dimensions of flow control BMP devices such as dispersion trenches, infiltration trenches, drywells, ground surface depressions, rain gardens, permeable pavements, rain water storage tanks, and perforated pipe connections
- Delineation and dimensions of target impervious surface and new pervious surface
- Delineation and dimensions of vegetated flowpath segments if applicable
- Delineation of native vegetated surface to be created and preserved
- Setback lengths between flow control BMPs and any property line, structure, steep slope, stream, wetland, or septic system.

C.4.2.3 INFORMATION SPECIFIC TO SMALL SITE ESC PLANS

In addition to the general information required in Section C.4.2.1, the following additional information is required on small site ESC plans, unless otherwise directed by DDES:
- Delineation of proposed clearing limits (i.e., area to be disturbed)
- Type and location of ESC measures
- Notes indicating the location of any significant offsite drainage features within 200 feet of the discharge point(s) for the site/lot, including streams, lakes, roadside ditches.

C.4.2.4 EXAMPLE SITE PLANS

Presented in this section is an example of a flow control BMP site plan (Figure C.4.2.A) and a small site ESC plan (Figure C.4.2.B) for construction of a single family residence.
FIGURE C.4.2.A SINGLE FAMILY RESIDENCE – FLOW CONTROL BMP SITE PLAN

LEGEND:
PROPERTY LINE ————
ST. CENTERLINE ———
CONTOUR ———
WATER FILLED
STEep SLOPE (40%+)
OFFSITE DRAINAGE ———

APPLICANT: Molena McResident
600 NE 7 Street
Someway, WA, 98111
(206) 555-4212

PROJECT PARCEL NO. = 322708
PROJECT ADDRESS= 7619 NE 0 Street
(proposed) = Someway, WA, 98111
SECTION/TOWNSHIP/RANGE: 32-27-08
TOTAL SITE ACREAGE: 1.69
TOTAL IMPERVIOUS AREA: 6450 SQ. FT.

SULS REPORT FOR ON-SITE SEWAGE
SYSTEM ATTACHED.
SECTION C.4 SMALL PROJECT DRAINAGE PLAN SPECIFICATIONS

FIGURE C.4.2.B SINGLE FAMILY RESIDENCE – SMALL SITE ESC PLAN

LEGEND:
PROPERTY LINE
ST. CENTERLINE
CONTOUR
WETLAND
STEEP SLOPE (40%+)
OFFSITE DRAINAGE

APPLICANT: Malene McResident
600 NE 2 Street
Sometaun, WA, 98111
(206) 988-1212

PROJECT PARCEL NO.: 322708
PROJECT ADDRESS: 7819 NE Q Street
(Sometaun, WA, 98111
SECTION/TOWNSHIP/RANGE: 32-27-08

TOTAL SITE ACREAGE: 1.69
TOTAL IMPERVIOUS AREA: 6480 SQ. FT.

BENCHMARK:
FIRE HYDRANT 480' AT BASE

APPROX. AREA TO BE CLEARED,
ALL EXPOSED SOILS WILL BE
MULCHED WHEN NOT BEING WORKED.

MARK CLEARING LIMIT
W/ S.A.S.B. FENCE

SCALE: 1"=60'

1/9/2009

2009 Surface Water Design Manual – Appendix C
C.4.3 BMP DESIGN AND MAINTENANCE DETAILS

For each flow control BMP shown on a FCBMP site plan or in the right-of-way or tract of a subdivision site improvement plan, design details and maintenance instructions must be provided to clarify the design, installation, and long term maintenance and operation of the BMP.

C.4.3.1 DESIGN DETAILS

Design details are typically diagrams with notes that show a close-up view and/or cross-section of the BMP device and provide dimensions and specifications of size, placement, materials, components, downstream vegetation requirements, etc. Although diagrams are typical, there are many BMP devices (e.g., rock pads) for which only written details and specifications are more than sufficient. For some BMPs, design details may not be needed at all (e.g., the reduced footprint BMP).

Design details should be displayed on 8½” x 11” or 8½” x 14” paper with 1-inch margins so they can be directly recorded as attachments to the required declaration of covenant and grant of easement per Requirement 3 of Section C.1.3.3 (p. C-18). No scale is required for the diagrams used. The design details for each flow control BMP may be combined with its maintenance instructions on the same sheet or multiple sheets. Design details may also be placed on the flow control BMP site plan if there is room. To be recordable, however, the font size must be no less than 8-pt.

The BMP-specific figures and minimum design specifications presented in Section C.2 can be used to prepare the design details for a specific application of a flow control BMP to a particular site/project. Also, the King County Water and Land Resources Division Surface Water Design Manual website contains downloadable, electronic versions of these and other figures/design specifications that can be adapted to a site/project as well. The 2005 Puget Sound Low Impact Development Manual is yet another source of figures and design specifications. If a proprietary version of a flow control BMP is used, the manufacturer or installer will usually provide a diagram and site-specific design specifications.

C.4.3.2 MAINTENANCE INSTRUCTIONS

Maintenance instructions are intended to explain to future property owners, the purpose of each flow control BMP and how it must be maintained and operated. A set of minimum maintenance instructions is provided for each flow control BMP presented in Section C.2. As King County gains more experience with the maintenance of these BMPs, updated maintenance instructions will be posted on the King County Water and Land Resources Division Surface Water Design Manual website. Also, the 2005 Puget Sound Low Impact Development Manual is yet another source of maintenance instructions. If a proprietary version of a flow control BMP is used, system-specific maintenance instructions from the manufacturer or installer must be included.

Maintenance instructions should be displayed on 8½” x 11” or 8½” x 14” paper with 1-inch margins so they can be directly recorded as attachments to the required declaration of covenant and grant of easement per Requirement 3 of Section C.1.3.3 (p. C-18). The maintenance instructions for each flow control BMP may be combined with its design details on the same sheet or multiple sheets. Maintenance instructions may also be placed on the flow control BMP site plan if there is room. To be recordable, however, the font size must be no less than 8-pt.
C.4.4 WRITTEN DRAINAGE ASSESSMENT

The written drainage assessment is a supporting document of the small project drainage plan and typically includes the following information:

- A **narrative** description of proposed project
- Any proposed **changes** to the project after preliminary approval
- A description of **proposed flow control BMPs** shown on the FCBMP site plan and how they were selected
- A description of **proposed ESC measures** shown on the plans and how they were selected
- A description of any necessary **special studies or soils reports**
- A description of any **other information** required by DDES.

C.4.4.1 EXAMPLE ASSESSMENT FOR A SINGLE FAMILY RESIDENCE

The purpose of this section is to illustrate the application of small project drainage requirements to a house being built on an existing lot. The flow control BMP site plan for this example is shown in Figure C.4.2.A (p.C-115), and the small site ESC plan is shown in Figure C.4.2.B (p. C-116). The written drainage assessment is as follows:

Drainage Assessment
Malene McResident Residence
7519 NE Q Street
Permit # B05R7184

The project is located east of Duvall on a 1.69-acre lot that is zoned RA. The lot is mostly forested with a wetland on the northeast corner of the property. The lot slopes down from Q Street on the south to P Street on the north. The slope on the south portion of the property is 6-14%. The house and its septic drainfields are proposed on the southern portion of the lot. The driveway will be approximately 10 feet by 120 feet (1,200 square feet) of impervious surface, the parking area 1,200 square feet, and the house 3,750 square feet. The total proposed impervious surface is 6,150 square feet. The total proposed clearing for the house, yard, drainfield areas, and driveway is 0.84 acres, which complies with the maximum of 50% allowed under KCC 16.82.150(C).

The wetland is a Category III wetland with a minimum required buffer width of 60 feet as determined in the preapplication meeting with DDES. By definition, the wetland is also a flood hazard area for which a floodplain and base flood elevation must be determined. Subject to DDES review and approval, an approximate base flood elevation of 452 has been estimated based on a downstream overflow elevation of 450 (see attached notes from the project's land surveyor). This elevation is well below the proposed house and driveway location.

The portion of the lot that is on a 40-50% slope is a steep slope hazard area as determined in the preapplication meeting with DDES. A 50-foot buffer and a 15-foot building setback is required, as shown on the flow control BMP plan. DDES determined that dispersing of the roof runoff toward the steep slope was acceptable, as shown on the plan.

Because the lot is larger than 22,000 square feet, it is subject to the Large Lot BMP Requirements in Appendix C of the Surface Water Design Manual. As mandated by these requirements, all proposed impervious surface (6,150 square feet) is targeted for application of flow control BMPs. As for new pervious surface (totaling 30,440 square feet), it is less than 35,000 square feet; therefore, no flow control BMPs are required for this surface.
To address the requirements for mitigation of target impervious surface, the applicability and feasibility of full dispersion was considered first. After subtracting out the wetland and the 50% portion of the lot that may be cleared per KCC 16.82, about 34,000 square feet of the lot will remain as unsubmerged native vegetated surface. This means that full dispersion could be applicable to up to 5,100 square feet of the target impervious surface (15% of 34,000). However, because of the lot's topography and the location of proposed clearing, there is no way to achieve the minimum required 100 feet of native vegetated flowpath segment that has a slope of 15% or flatter. Therefore, full dispersion is not feasible.

Full infiltration of roof runoff was considered next. According to the attached soils report for the septic system design, the soil on the project site is a sandy loam underlain by dense glacial till. Therefore, full infiltration is not applicable. This allowed for selection of basic dispersion as the flow control BMP of choice for application to the target impervious surfaces of this project.

To implement basic dispersion, the roof downspouts of the proposed house will discharge via splash blocks to minimum 50-foot vegetated flowpath segments located on slopes no steeper than 15% as shown on the flow control BMP site plan. No more than 700 square feet of roof area will discharge to any one splash block and vegetated flowpath segment. All of the flowpaths will be downslope of septic tank and drainfields.

The northern portion of the driveway will be discharged via sheet flow over a 10-foot vegetated flowpath segment to the north, as shown on the site plan. Runoff from approximately 700 square feet of the southern portion of the driveway will be collected by a rock-lined ditch and a concrete driveway berm and discharged to a 12-foot-long dispersion trench with notch board and then over a 25-foot vegetated flowpath segment toward the north. The 30-foot wide parking area will be discharged via sheet flow over a 2-foot-wide crushed rock strip and a vegetated flowpath segment of 15 feet as shown on the FCBMP site plan.

In order to prevent erosion and trap sediments within the project site, the following BMPs will be used approximately as shown on the ESC plan:

- Clearing limits will be marked by fencing or other means on the ground.
- The driveway will be constructed and graveled immediately. A rocked construction entrance will be placed at the end of the driveway. Dispersion trenches will be placed according to flow control requirements. Cleared areas accepting sheet flow from the driveway and parking area will be seeded and mulched.
- Runoff will not be allowed to concentrate and no water will be allowed to point discharge onto the slopes.
- Silt fencing will be placed along slope contours at the downslope limit of clearing.
- Mulch will be spread over all cleared areas of the site when they are not being worked. Mulch will consist of air-dried straw and chipped site vegetation.
C.5 REFERENCE SECTION

This section contains background and supplemental information on the Small Project Drainage Review process and an example declaration of covenant and grant of easement required for individual lot developments. The materials in this section are for reference only and may be updated over time. For the latest versions of these materials, see the King County Water and Land Resources Division, Surface Water Design Manual website.

C.5.1 SMALL PROJECT DRAINAGE REVIEW PROCESS

Drainage review, when required, is one of several reviews conducted by the Department of Development and Environmental Services (DDES) as part of its review process for County development permits and approvals. The process used for drainage review depends largely on the permit review process already established for different types of developments (e.g., subdivision, single family residence, or commercial building). For projects in Small Project Drainage Review, the review process primarily depends on whether the project is a proposed short plat or just proposed site improvements to an existing parcel or combination of parcels (individual lot project). Figure C.5.1.A (p. C-123) is a flow chart that shows the general drainage review process common to these two types of development. Below is a description of the Small Project Drainage Review process for each of these development types.

C.5.1.1 INDIVIDUAL LOT PROJECTS

This section describes the Small Project Drainage Review process for single family residential projects and agricultural projects that apply for a permit or approval to make specific site improvements such as construction of buildings, additions, driveways, or other impervious surfaces, or clearing of native vegetation.

When a permit/approval for a single family residential project or agricultural project requires drainage review as specified in the SWDM, DDES Site Engineering staff plot the project location on various maps (Assessor's, Kroll, topography, soils, etc.), research critical areas on or near the site, and check for adopted area-specific conditions that might affect the drainage requirements for the site. A DDES engineer reviews this information with respect to the proposed application. In most cases, a visit to the site is made to check existing conditions and drainage concerns.

The DDES engineer makes a determination of the type of drainage review required for the project and will either:

- Request additional information as needed,
- Request that a small project drainage plan (see Section C.4, p. C-111) be submitted,
- Request that an engineered drainage plan be submitted in accordance with Chapter 2 of the Surface Water Design Manual, OR
- Approve the permit subject to complying with an approved small project drainage plan or engineered drainage plan,
- Deny the permit application because it cannot meet required codes (e.g., a proposed new residence located in a FEMA floodway or in a channel migration hazard area).
C.5.1.2 SUBDIVISION PROJECTS

For single family residential projects that are subdivisions, the Small Project Drainage Review process generally includes the following elements:

Preapplication

The short plat process requires a mandatory preapplication meeting prior to formal submittal. The purpose of the preapplication meeting is to identify potential site constraints and regulatory requirements for the proposed project. If the short plat is subject to Small Project Drainage Review, the applicant may use this appendix or other information necessary to complete the small project drainage plan.

If the drainage requirements for a specific short plat are determined during a preapplication meeting, small project drainage plans (see Section C.4) may be submitted with the application. Section C.1.1 contains a series of questions that may help assess the requirements for a potential small project short plat. Submitting plans with the short plat permit application may expedite the review of the proposed application. However, there is risk that the plans prepared may exceed, or not adequately address, the yet-to-be-determined conditions of preliminary approval.

Preliminary Approval

After formal permit application, a more detailed review of the site and a determination of the type of drainage review required for the proposed subdivision is made. If subject to Small Project Drainage Review, the application may be placed on hold pending the completion of a small project drainage plan.

The applicant is responsible for submitting a small project drainage plan as detailed in Section C.4 (p. C-111). Upon completion and approval of the small project drainage plan (and other application requirements), preliminary approval may be granted, subject to the conditions of the small project drainage plan. For simple short plats that have no drainage issues triggering Targeted Drainage Review, engineered drainage plans are not usually required.

For proposed short plats requiring some engineering analysis, preliminary approval may be granted subject to the approval of engineering plans and a small project drainage plan. The applicant may choose to have the small project drainage plan incorporated into the engineered plans (prepared by a civil engineer) or may elect to have a separate small project drainage plan that is not prepared by an engineer.

Proposed short plats that are subject to Small Project Drainage Review but cannot comply with the small project drainage requirements will be subject to Full Drainage Review. Any proposed short plats unable to comply with all applicable regulations (drainage or non-drainage) may be denied.

Engineering Review

Short plats receiving preliminary approval subject to the completion of a small project drainage plan and/or engineering plans are subject to engineering review. When separate plans are being prepared, submittals for engineering review should include both sets of plans to minimize review time and resubmittal fees.

Final Recording

All short plat applications must complete the requirements of final recording. Small projects may require additional note(s) be placed on the recorded documents that reference the approved small project drainage plan for future lot construction.

Note: Future building permit applications that do not comply with the conditions of the approved small project drainage plan (e.g., impervious coverage limits, location of BMPs, etc.) may be subject to Full Drainage Review.
C.5.1 SMALL PROJECT DRAINAGE REVIEW PROCESS

Applicant submits completed permit application.

DDES screens application for drainage issues.

Does project meet thresholds for small project drainage review?

1. Applicant prepares small project drainage plan in coordination with Engineering Plans, OR
2. Engineer prepares drainage plans

Can drainage issues be addressed by Targeted Drainage Review?

Can Targeted Drainage Issues be addressed with DDES Review and Conditions?

Can site plan and/or drainage plan be modified to meet small project requirements?

NO

Engineer prepares drainage plans

FULL DRAINAGE REVIEW

TARGETED DRAINAGE REVIEW

SMALL PROJECT DRAINAGE REVIEW

YES

YES

YES

Applicant prepares small project drainage plans

Engineer prepares drainage plans

Engineer prepares drainage plans

YES

NO

YES

NO

NO

NO

YES

NO

NO
C.5.1.3 CHANGES FROM THE ORIGINAL APPROVED PLAN

Approval of small project drainage plans is based on a specific proposed project. Changes from the original approved small project drainage plan (e.g., additional impervious surface or clearing, right-of-way improvements) may require additional review by DDES engineering staff, or they may initiate Full Drainage Review, where a civil engineer must analyze the project and submit engineering plans. This will add additional review time and expense to the review process.

Changes proposed prior to permit issuance must be submitted through the standard revision process for the type of application.

Changes proposed after permit issuance (during construction) must be submitted through the DDES site inspector. Proposed changes shall not be implemented prior to DDES engineering approval. Changes performed without engineering approval may be subject to Stop Work notices and accompanying fees and reviews.
C.5.2 DECLARATION OF COVENANT

The following covenant form or an equivalent form may be used to achieve the objectives specified in Requirement 3 of Section C.1.3.3 (p. C-18). In either case, the completed form must be reviewed and approved by DDES prior to recording. If a different form is used, DDES may require review and approval of the alternative form by DNRP. When preparing any form that grants an interest in real property, applicants are encouraged to seek legal advice from a professional qualified in real estate matters.
DECLARATION OF COVENANT
FOR MAINTENANCE AND INSPECTION OF FLOW CONTROL BMPS

Grantor: ____________________________

Grantee: King County

Legal Description: __

Additional Legal(s) on: ___

Assessor's Tax Parcel ID#: __

IN CONSIDERATION of the approved King County (check one of the following) ☐ residential
building permit, ☐ commercial building permit, ☐ clearing and grading permit, ☐ subdivision permit, or
☐ short subdivision permit for Application No. _________________ relating to the real property
("Property") described above, the Grantor(s), the owner(s) in fee of that Property, hereby
covenants(covenant) with King County, a political subdivision of the state of Washington, and its
municipal successors in interest and assigns ("King County" and "the County", or "its municipal
successor"), that he/she(they) will observe, consent to, and abide by the conditions and obligations set
forth and described in Paragraphs 1 through 8 below with regard to the Property. Grantor(s) hereby
grants(grant), covenants(covenant), and agrees(agree) as follows:
1. Grantor(s) or his/her (their) successors in interest and assigns ("Owners") shall retain, uphold, and protect the stormwater management devices, features, pathways, limits, and restrictions, known as flow control best management practices ("BMPs"), shown on the approved Flow Control BMP Site Plan for the Property attached hereto and incorporated herein as Exhibit A.

2. The Owners shall at their own cost, operate, maintain, and keep in good repair, the Property's BMPs as described in the approved Design and Maintenance Details for each BMP attached hereto and incorporated herein as Exhibit B.

3. King County shall provide at least 30 days written notice to the Owners that entry on the Property is planned for the inspection of the BMPs. After the 30 days, the Owners shall allow King County to enter for the sole purpose of inspecting the BMPs. In lieu of inspection by the County, the Owners may elect to engage a licensed civil engineer registered in the state of Washington who has expertise in drainage to inspect the BMPs and provide a written report describing their condition. If the engineer option is chosen, the Owners shall provide written notice to the Director of the Water and Land Resources Division or its municipal successor in interest ("WLR") within fifteen days of receiving the County's notice of inspection. Within 30 days of giving this notice, the Owners, or the engineer on behalf of the Owners, shall provide the engineer's report to WLR. If the report is not provided in a timely manner as specified above, the County may inspect the BMPs without further notice.

4. If King County determines from its inspection, or from an engineer's report provided in accordance with Paragraph 3, that maintenance, repair, restoration, and/or mitigation work is required for the BMPs, WLR shall notify the Owners of the specific maintenance, repair, restoration, and/or mitigation work (Work) required under Title 9 of the King County Code ("KCC"). WLR shall also set a reasonable deadline for completing the Work or providing an engineer's report that verifies completion of the Work. After the deadline has passed, the Owners shall allow the County access to re-inspect the BMPs unless an engineer's report has been provided verifying completion of the Work. If the work is not completed...
properly within the time frame set by WLR, King County may initiate an enforcement action. Failure to
properly maintain the BMPs is a violation of KCC Chapter 9.04 and may subject the Owners to
enforcement under the KCC, including fines and penalties.

5. Apart from performing routine landscape maintenance, the Owners are hereby required to
obtain written approval from WLR before performing any alterations or modifications to the BMPs.

6. Any notice or approval required to be given by one party to the other under the provisions of
this Declaration of Covenant shall be effective upon personal delivery to the other party, or after three (3)
days from the date that the notice or approval is mailed with delivery confirmation to the current address
on record with each Party. The parties shall notify each other of any change to their addresses.

7. This Declaration of Covenant is intended to promote the efficient and effective management of
surface water drainage on the Property, and it shall inure to the benefit of all the citizens of King County
and its municipal successors and assigns. This Declaration of Covenant shall run with the land and be
binding upon Grantor(s), and Grantor's(s') successors in interest and assigns.

8. This Declaration of Covenant may be terminated by execution of a written agreement by the
Owners and King County that is recorded by King County in its real property records.
IN WITNESS WHEREOF, this Declaration of Covenant for the Maintenance and Inspection of
Flow Control BMPs is executed this _____ day of ____________________, 20_____.

GRANTOR, owner of the Property

GRANTOR, owner of the Property

STATE OF WASHINGTON)
COUNTY OF KING)ss.

On this day personally appeared before me:

, to me known to be the individual(s) described in
and who executed the within and foregoing instrument and acknowledged that they signed the same as
their free and voluntary act and deed, for the uses and purposes therein stated.

Given under my hand and official seal this _____ day of ____________________, 20_____.

Printed name
Notary Public in and for the State of Washington,
residing at

My appointment expires ____________________